2308 Repositories
Python random-quote-machine Libraries
Rubik's cube assistant on Flask webapp
webcube Rubik's cube assistant on Flask webapp. This webapp accepts the six faces of your cube and gives you the voice instructions as a response. Req
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.
Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2
This is the repo for Uncertainty Quantification 360 Toolkit.
UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert
🔬 A curated list of awesome machine learning strategies & tools in financial market.
🔬 A curated list of awesome machine learning strategies & tools in financial market.
Official code for "Mean Shift for Self-Supervised Learning"
MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In
Simultaneous NMT/MMT framework in PyTorch
This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi
AI and Machine Learning workflows on Anthos Bare Metal.
Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe
A New, Interactive Approach to Learning Python
This is the repository for The Python Workshop, published by Packt. It contains all the supporting project files necessary to work through the course from start to finish.
A token logger for discord + steals Brave/Chrome passwords and usernames
Backdoor Machine - ❗ For educational purposes only ❗ A program made in python for stealing passwords and usernames from Google Chrome/Brave and tokenl
A single Python file with some tools for visualizing machine learning in the terminal.
Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t
Deep functional residue identification
DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021
Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data
federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat
Orchest is a browser based IDE for Data Science.
Orchest is a browser based IDE for Data Science. It integrates your favorite Data Science tools out of the box, so you don’t have to. The application is easy to use and can run on your laptop as well as on a large scale cloud cluster.
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this
Implementation of the paper "Shapley Explanation Networks"
Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,
2021语言与智能技术竞赛:机器阅读理解任务
LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202
DataOps framework for Machine Learning projects.
Noronha DataOps Noronha is a Python framework designed to help you orchestrate and manage ML projects life-cycle. It hosts Machine Learning models ins
An end-to-end machine learning library to directly optimize AUC loss
LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n
An Unsupervised Graph-based Toolbox for Fraud Detection
An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way
Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.
A Lucid Framework for Transparent and Interpretable Machine Learning Models.
Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)
Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio
OpenVisionAPI server
🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst
Graphsignal Logger
Graphsignal Logger Overview Graphsignal is an observability platform for monitoring and troubleshooting production machine learning applications. It h
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’
Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.
SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining
A DeepStack custom model for detecting common objects in dark/night images and videos.
DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d
A curated list of programmatic weak supervision papers and resources
A curated list of programmatic weak supervision papers and resources
A collection of GNN-based fake news detection models.
This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Preference-aware Fake News Detection (UPFD) framework. The fake news detection problem is instantiated as a graph classification task under the UPFD framework.
Simple but maybe too simple config management through python data classes. We use it for machine learning.
👩✈️ Coqpit Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization. Curre
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
MILES is a multilingual text simplifier inspired by LSBert - A BERT-based lexical simplification approach proposed in 2018. Unlike LSBert, MILES uses the bert-base-multilingual-uncased model, as well as simple language-agnostic approaches to complex word identification (CWI) and candidate ranking.
MILES Multilingual Lexical Simplifier Explore the docs » Read LSBert Paper · Report Bug · Request Feature About The Project MILES is a multilingual te
Identify the emotion of multiple speakers in an Audio Segment
MevonAI - Speech Emotion Recognition
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓
A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers how to leverage our APIs for optimized deep learning inference in their applications.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
YOLOv5 in PyTorch ONNX CoreML TFLite
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice.
Reformer, the efficient Transformer, in Pytorch
Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/
Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.
UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s
Phrase-Based & Neural Unsupervised Machine Translation
Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas
End-to-End Speech Processing Toolkit
ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18
Sequence-to-Sequence Framework in PyTorch
nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara
PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
Ray provides a simple, universal API for building distributed applications.
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
An easier way to build neural search on the cloud
Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the efficient patterns to build the system by parts, or chaining them into a Flow for an end-to-end experience.
Turns your machine learning code into microservices with web API, interactive GUI, and more.
Turns your machine learning code into microservices with web API, interactive GUI, and more.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
ML-powered Loan-Marketer Customer Filtering Engine
In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very lengthy and uncertain that most of the customers will buy it. So, there is a very need for a filtering system that segregates the customers who are unlikely to buy loans and the opposite. Loan-Web is visualized and made up on that context.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform
Implementation of different ML Algorithms from scratch, written in Python 3.x
Implementation of different ML Algorithms from scratch, written in Python 3.x
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.
One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅
🏅 Collection of Kaggle Solutions and Ideas 🏅
A list of multi-task learning papers and projects.
This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey paper.
Turns your Python functions into microservices with web API, interactive GUI, and more.
Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images.
Focus on Algorithm Design, Not on Data Wrangling
The dataTap Python library is the primary interface for using dataTap's rich data management tools. Create datasets, stream annotations, and analyze model performance all with one library.
skweak: A software toolkit for weak supervision applied to NLP tasks
Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels without pre-existing datasets. The only available option is often to collect and annotate texts by hand, which is expensive and time-consuming.
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.
Simple but maybe too simple config management through python data classes. We use it for machine learning.
A complete guide to start and improve in machine learning (ML)
A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing
Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies. The framework automatically analyzes trading sessions, and the analysis may be used to train predictive models.
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions
A library for debugging/inspecting machine learning classifiers and explaining their predictions
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing
FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP only focuses on adavanced models and dataset, while FedML supports various federated optimizers (e.g., FedAvg) and platforms (Distributed Computing, IoT/Mobile, Standalone).
Diffgram - Supervised Learning Data Platform
Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow
Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t
NoPdb: Non-interactive Python Debugger
NoPdb: Non-interactive Python Debugger Installation: pip install nopdb Docs: https://nopdb.readthedocs.io/ NoPdb is a programmatic (non-interactive) d
Visualization toolkit for neural networks in PyTorch! Demo --
FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The
Open Source Differentiable Computer Vision Library for PyTorch
Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer
A medical imaging framework for Pytorch
Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo
Sandbox for training deep learning networks
Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (
Image augmentation library in Python for machine learning.
Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and love from the PyData stack (such as numpy, pandas, and scikit-learn).
xitorch: differentiable scientific computing library
xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.
A Paper List for Speech Translation
Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing
Quantum Machine Learning
The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for experiments, and there is also QGAN (Quantum Generative Adversarial Network) algorithm.
A fast and easy implementation of Transformer with PyTorch.
FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which
Newt - a Gaussian process library in JAX.
Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].
Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
POT : Python Optimal Transport
This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling
bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies
Learning to trade under the reinforcement learning framework
Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework
Predict stock movement with Machine Learning and Deep Learning algorithms
Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.
Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Using python and scikit-learn to make stock predictions
MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]
Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by
Processing and interpolating spatial data with a twist of machine learning
Documentation | Documentation (dev version) | Contact | Part of the Fatiando a Terra project About Verde is a Python library for processing spatial da