191 Repositories
Python sampling-distribution Libraries
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).
DeepBDC for few-shot learning Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)
MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.
ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the
Analysis of Smiles through reservoir sampling & RDkit
Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)
ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection
RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie
PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes
PolytopeSampler PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disrib
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.
VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built
Splat a video into a mosaic by sampling a frame at regular intervals
Splat a video into a mosaic by sampling a frame at regular intervals. Useful for seeing the changes over time of an entire video or movie.
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt
Out of Distribution Detection on Natural Adversarial Examples
OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)
CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr
Adversarial vulnerability of powerful near out-of-distribution detection
Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in data science, Machine Learning, and scientific inference, with the design goal of unifying the automation (of Monte Carlo simulations), user-friendliness (of the library), accessibility (from multiple programming environments), high-performance (at runtime), and scalability (across many parallel processors).
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection
Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer
OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets
On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli
This repository collects 100 papers related to negative sampling methods.
Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda
Token drop template on Tezos blockchain, based on Merkle Tree Distribution mechanism.
🛬 Token Drop Template This is a template to perform token drops efficiently on Tezos blockchain. The drop is handled using Merkle Tree Distribution m
The Qis|krypt⟩ is a software suite of protocols of quantum cryptography and quantum communications
The Qis|krypt⟩ is a software suite of protocols of quantum cryptography and quantum communications, as well, other protocols and algorithms, built using IBM’s open-source Software Development Kit for quantum computing Qiskit. ⚛️ 🔐
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.
Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly
Clustering with variational Bayes and population Monte Carlo
pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.
Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u
The module that allows the collection of data sampling, which is transmitted with WebSocket via WIFI or serial port for CSV file.
The module that allows the collection of data sampling, which is transmitted with WebSocket via WIFI or serial port for CSV file.
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning
CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).
DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho
Self-supervised learning optimally robust representations for domain generalization.
OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.
EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
A Python library for common tasks on 3D point clouds
Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation
OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.
r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o
PyTorch Implementation for Deep Metric Learning Pipelines
Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email protected]), Biagio Brattoli ([email protected]) When using thi
Generates images with semantic content from distribution A in the style of distribution B
A2B Generates images with semantic content from distribution A in the style of d
A software manager for easy development and distribution of Python code
Piper A software manager for easy development and distribution of Python code. The main features that Piper adds to Python are: Support for large-scal
Cilantropy: a Python Package Manager interface created to provide an "easy-to-use" visual and also a command-line interface for Pythonistas.
Cilantropy Cilantropy is a Python Package Manager interface created to provide an "easy-to-use" visual and also a command-line interface for Pythonist
Python implementation of the multistate Bennett acceptance ratio (MBAR)
pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ
Audio pitch-shifting & re-sampling utility, based on the EMU SP-1200
Pitcher.py Free & OS emulation of the SP-12 & SP-1200 signal chain (now with GUI) Pitch shift / bitcrush / resample audio files Written and tested in
Differentiable Annealed Importance Sampling (DAIS)
Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss
EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.
WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape
A library which implements low-level functions that relate to packaging and distribution of Python
What is it? Distlib is a library which implements low-level functions that relate to packaging and distribution of Python software. It is intended to
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling
Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."
RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021
Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks
SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu
Adaptive: parallel active learning of mathematical functions
adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu
Code for "Long-tailed Distribution Adaptation"
Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini
Code for paper "Adversarial score matching and improved sampling for image generation"
Adversarial score matching and improved sampling for image generation This repo contains the official implementation for the ICLR 2021 paper Adversari
A simple application that calculates the probability distribution of a normal distribution
probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution
OOD Generalization and Detection (ACL 2020)
Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark
FOSS Digital Asset Distribution Platform built on Frappe.
Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning
Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models
LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
WinPython is a portable distribution of the Python programming language for Windows
WinPython tools Copyright © 2012-2013 Pierre Raybaut Copyright © 2014-2019+ The Winpython development team https://github.com/winpython/ Licensed unde
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).
ReAct: Out-of-distribution Detection With Rectified Activations
ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model
A procedural Blender pipeline for photorealistic training image generation
BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features
Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.
norm-tol-int Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python. Methods The
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".
PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra
eBay's TSV Utilities: Command line tools for large, tabular data files. Filtering, statistics, sampling, joins and more.
Command line utilities for tabular data files This is a set of command line utilities for manipulating large tabular data files. Files of numeric and
Auto locust load test config and worker distribution with Docker and GitHub Action
Auto locust load test config and worker distribution with Docker and GitHub Action Install Fork the repo and change the visibility option to private S
Auto-Encoding Score Distribution Regression for Action Quality Assessment
DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE
Select, weight and analyze complex sample data
Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect
zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry
fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)
Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic
A Python package for generating concise, high-quality summaries of a probability distribution
GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"
Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)
FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode
Algorithms for calibrating power grid distribution system models
Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the
PyScaffold is a project generator for bootstrapping high quality Python packages
PyScaffold is a project generator for bootstrapping high quality Python packages, ready to be shared on PyPI and installable via pip. It is easy to use and encourages the adoption of the best tools and practices of the Python ecosystem, helping you and your team to stay sane, happy and productive. The best part? It is stable and has been used by thousands of developers for over half a decade!
State-to-Distribution (STD) Model
State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo
An implementation of a discriminant function over a normal distribution to help classify datasets.
CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.
MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.
Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi
Fully automated download and parsing for Texas A&M University's Registrar's grade distribution PDFs for years 2014+.
Fully automated download and parsing for Texas A&M University's Registrar's grade distribution PDFs for years 2014+. Adds the parsing results to a mySQL database.
'Solving the sampling problem of the Sycamore quantum supremacy circuits
solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s
Install .deb packages on any distribution:)
Install .deb packages on any distribution:) Install Dependencies The project needs dependencies Python python is often installed by default on linux d
Perturb-and-max-product: Sampling and learning in discrete energy-based models
Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”
Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.
META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu
Normalizing Flows with a resampled base distribution
Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve