217 Repositories
Python soft-decision-tree Libraries
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)
Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi
Generalized Decision Transformer for Offline Hindsight Information Matching
Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:
An Active Automata Learning Library Written in Python
AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto
Blender pluggin (python script) that adds a randomly generated tree with random branches and bend orientations
Blender pluggin (python script) that adds a randomly generated tree with random branches and bend orientations
A music recommendation REST API which makes a machine learning algorithm work with the Django REST Framework
music-recommender-rest-api A music recommendation REST API which makes a machine learning algorithm work with the Django REST Framework How it works T
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu
A minimalist environment for decision-making in autonomous driving
highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa
Full-featured Decision Trees and Random Forests learner.
CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr
slim-python is a package to learn customized scoring systems for decision-making problems.
slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p
Responsible Machine Learning with Python
Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more
Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play
Platform Tree for Xiaomi Redmi Note 7/7S (lavender)
The Xiaomi Redmi Note 7 (codenamed "lavender") is a mid-range smartphone from Xiaomi announced in January 2019. Device specifications Device Xiaomi Re
Multi-objective constrained optimization for energy applications via tree ensembles
Multi-objective constrained optimization for energy applications via tree ensembles
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.
Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length
Test symmetries with sklearn decision tree models
Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro
These scripts look for non-printable unicode characters in all text files in a source tree
find-unicode-control These scripts look for non-printable unicode characters in all text files in a source tree. find_unicode_control.py should work w
Decision Border Visualizer for Classification Algorithms
dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."
Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa
A simple python implementation of Decision Tree.
DecisionTree A simple python implementation of Decision Tree, using Gini index. Usage: import DecisionTree node = DecisionTree.trainDecisionTree(lab
Dynamica causal Bayesian optimisation
Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight
SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia
This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specialized data structure called VP-Tree which makes searching an image on a dataset of 100Ks almost instantanious
Offline Reverse Image Search Overview This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specia
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)
PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre
Stochastic Gradient Trees implementation in Python
Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th
Extremely simple and fast extreme multi-class and multi-label classifiers.
napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m
A Real-Time-Strategy game for Deep Learning research
Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)
Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (
Draw tree diagrams from indented text input
Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm
Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.
An easy-to-use high-performance asynchronous web framework.
中文 | English 一个易用的高性能异步 web 框架。 Index.py 文档 Index.py 实现了 ASGI3 接口,并使用 Radix Tree 进行路由查找。是最快的 Python web 框架之一。一切特性都服务于快速开发高性能的 Web 服务。 大量正确的类型注释 灵活且高效的
PyPI package for scaffolding out code for decision tree models that can learn to find relationships between the attributes of an object.
Decision Tree Writer This package allows you to train a binary classification decision tree on a list of labeled dictionaries or class instances, and
SynNet - synthetic tree generation using neural networks
SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou
Permute Me Softly: Learning Soft Permutations for Graph Representations
Permute Me Softly: Learning Soft Permutations for Graph Representations
general-phylomoji: a phylogenetic tree of emoji
general-phylomoji: a phylogenetic tree of emoji
Lark is a parsing toolkit for Python, built with a focus on ergonomics, performance and modularity.
Lark is a parsing toolkit for Python, built with a focus on ergonomics, performance and modularity.
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.
Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"
ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree
User-friendly, tiny source code searcher written by pure Python.
User-friendly, tiny source code searcher written in pure Python. Example Usages Cat is equivalent in the regular expression as '^Cat$' bor class Cat
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"
Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah
Tree LSTM implementation in PyTorch
Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati
Reinforcement learning models in ViZDoom environment
DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".
TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende
Print a directory tree structure in your Python code.
directory-structure Print a directory tree structure in your Python code. Download You can simply: pip install directory-structure Or you can also: Cl
决策树分类与回归模型的实现和可视化
DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.
Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learning-based MWP algorithms.
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J
This repository contains the code and models for the following paper.
DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".
R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"
DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)
AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f
Wisdom Tree is a concentration app i am working on.
Wisdom Tree Wisdom Tree is a tui concentration app I am working on. Inspired by the wisdom tree in Plants vs. Zombies which gives in-game tips when it
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA
Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.
Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021
NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree
Multivariate Boosted TRee
Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)
Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"
Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.
To solve games using AI, we will introduce the concept of a game tree followed by minimax algorithm.
To solve games using AI, we will introduce the concept of a game tree followed by minimax algorithm.
Disagreement-Regularized Imitation Learning
Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.
Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M
Deep Image Search - AI-Based Image Search Engine
Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search technique.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models and supports classification, regression and ranking. TF-DF is a TensorFlow wrapper around the Yggdrasil Decision Forests C++ libraries. Models trained with TF-DF are compatible with Yggdrasil Decision Forests' models, and vice versa.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.
PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)
gcptree - Like the unix tree command but for GCP Org Heirarchy
gcptree Like the unix tree command but for GCP Org Heirarchy. For a note on coloring, the org node is green, folders and blue, and projects that are n
Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)
Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.
Grammar Induction using a Template Tree Approach
Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data
Bucatini: a soft PIPE PHY for FPGA SerDes
Bucatini: a soft PIPE PHY for FPGA SerDes Bucatini is a noodly gateware layer capable of transforming an FPGA SerDes into a PIPE PHY, allowing you to
An easy-to-use high-performance asynchronous web framework.
An easy-to-use high-performance asynchronous web framework.
Proto-RL: Reinforcement Learning with Prototypical Representations
Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto
Neural Oblivious Decision Ensembles
Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di
Algorithmic trading using machine learning.
Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto
An introduction of Markov decision process (MDP) and two algorithms that solve MDPs (value iteration, policy iteration) along with their Python implementations.
Markov Decision Process A Markov decision process (MDP), by definition, is a sequential decision problem for a fully observable, stochastic environmen
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
Make tree planting a part of your daily workflow. 🌳
Continuous Reforestation Make tree planting a part of your daily workflow. 🌳 A GitHub Action for planting trees within your development workflow usin
Dogs classification with Deep Metric Learning using some popular losses
Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo
treeinterpreter - Interpreting scikit-learn's decision tree and random forest predictions.
TreeInterpreter Package for interpreting scikit-learn's decision tree and random forest predictions. Allows decomposing each prediction into bias and
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)
Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class