2205 Repositories
Python spiking-neural-networks Libraries
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks
Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).
Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph
Deep learning for spiking neural networks
A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)
BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21
MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving
NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks
MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)
About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"
This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-decoder model and benchmarks the combination under simulated noisy rewards.
Neural Turing Machines (NTM) - PyTorch Implementation
PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.
YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".
Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision
This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit counterparts.
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
Guesslang detects the programming language of a given source code
Detect the programming language of a source code
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).
Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)
CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis
Generative Flow Networks
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.
CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha
Official implementation of Meta-StyleSpeech and StyleSpeech
Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code
A "gym" style toolkit for building lightweight Neural Architecture Search systems
A "gym" style toolkit for building lightweight Neural Architecture Search systems
Ἀνατομή is a PyTorch library to analyze representation of neural networks
Ἀνατομή is a PyTorch library to analyze representation of neural networks
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing
AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st
10th place solution for Google Smartphone Decimeter Challenge at kaggle.
Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM
Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci
Graph Convolutional Networks in PyTorch
Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi
Learning and Building Convolutional Neural Networks using PyTorch
Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020
TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L
We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.
An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering Papers with code | Paper Nikola Zubić Pietro Lio University
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.
Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T
PyTorch implementation for paper Neural Marching Cubes.
NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.
Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on
Neural Scene Graphs for Dynamic Scene (CVPR 2021)
Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object compositions and views.
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks
Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis
Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The
PyTorch implementation of Neural Dual Contouring.
NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you
Neural network visualization toolkit for tf.keras
Neural network visualization toolkit for tf.keras
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)
transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery
A powerful and flexible machine learning platform for drug discovery
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.
vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
neural network based speaker embedder
Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)
CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa
Defending graph neural networks against adversarial attacks (NeurIPS 2020)
GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ([email protected]), Marinka Zitnik (marinka@hms.
NeRD: Neural Reflectance Decomposition from Image Collections
NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec
Sum-Product Probabilistic Language
Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)
Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations
ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.
AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",
DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"
JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA
Viewmaker Networks: Learning Views for Unsupervised Representation Learning
Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.
Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021
NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"
TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper
DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"
NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I
A library for uncertainty representation and training in neural networks.
Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch
Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".
An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr
PyTorch implementations of neural network models for keyword spotting
Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"
HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba
Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX.
Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch
This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.
This project is a sample demo of Arxiv search related to AI/ML Papers built using Streamlit, sentence-transformers and Faiss.
Image Deblurring using Generative Adversarial Networks
DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo
Image restoration with neural networks but without learning.
Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s
Deep Learning Head Pose Estimation using PyTorch.
Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a
Synthesizing and manipulating 2048x1024 images with conditional GANs
pix2pixHD Project | Youtube | Paper Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translatio
Neural Module Network for VQA in Pytorch
Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled
PyTorch implementation of the YOLO (You Only Look Once) v2
PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics
Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a
Image reconstruction done with untrained neural networks.
PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"
Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
This's an implementation of deepmind Visual Interaction Networks paper using pytorch
Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch
Prototypical Networks for Few shot Learning in PyTorch
Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation
Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"
Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red
A PyTorch Implementation of Neural IMage Assessment
NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps
Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s
NIMA: Neural IMage Assessment
PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from
Sequence modeling benchmarks and temporal convolutional networks
Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"
Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.
PyTorch implementations of Generative Adversarial Networks.
This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as