2272 Repositories
Python Complex-Valued-Neural-Networks-CVNN- Libraries
Neural Nano-Optics for High-quality Thin Lens Imaging
Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow
PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:
Explaining neural decisions contrastively to alternative decisions.
Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng
A large-scale database for graph representation learning
A large-scale database for graph representation learning
Rename Images with Auto Generated Neural Image Captions
Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation
UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".
Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.
Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks
OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)
Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age
Evaluation of TCP BBRv1 in wireless networks
The Network Simulator, Version 3 Table of Contents: An overview Building ns-3 Running ns-3 Getting access to the ns-3 documentation Working with the d
Custom Implementation of Non-Deep Networks
ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin
Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S
Heterogeneous Temporal Graph Neural Network
Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing
Gradient representations in ReLU networks as similarity functions
Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our
Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.
Deep-FIR Codebase - Super Resolution Meta Attention Networks About This repository contains the main coding framework accompanying our work on meta-at
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)
Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".
L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization.
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation
ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition
Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal
SimplEx - Explaining Latent Representations with a Corpus of Examples
SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ([email protected]) This repository contains the imp
OneFlow is a performance-centered and open-source deep learning framework.
OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe
Dist2Dec: A Simplicial Neural Network for Homology Localization
Dist2Dec: A Simplicial Neural Network for Homology Localization
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers
RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS
Recognize numbers from an (28 x 28) image using neural networks
Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.
Video Matting via Consistency-Regularized Graph Neural Networks
Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)
Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.
Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica
Space Time Recurrent Memory Network - Pytorch
Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio
Sharing of contents on mitochondrial encounter networks
mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance
Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices
GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re
Official Pytorch implementation for video neural representation (NeRV)
NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"
Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie
Official Pytorch implementation for video neural representation (NeRV)
NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti
Layered Neural Atlases for Consistent Video Editing
Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021
Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con
Simple PyTorch hierarchical models.
A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.
Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)
A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson
A script that trains a model to recognize handwritten digits using the MNIST data set.
handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"
DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im
ConformalLayers: A non-linear sequential neural network with associative layers
ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)
NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale
EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud
Harmonic Memory Networks for Graph Completion
HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!
CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC
arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning
Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.
CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement
CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme
A PyTorch-based library for fast prototyping and sharing of deep neural network models.
A PyTorch-based library for fast prototyping and sharing of deep neural network models.
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train
Attentive Implicit Representation Networks (AIR-Nets)
Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.
Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.
Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google
Deep Networks with Recurrent Layer Aggregation
RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce
Attentive Implicit Representation Networks (AIR-Nets)
Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo
Segmentation models with pretrained backbones. PyTorch.
Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to
This code provides various models combining dilated convolutions with residual networks
Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492
PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain
Very Deep Convolutional Networks for Large-Scale Image Recognition
pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.
Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l
Training Very Deep Neural Networks Without Skip-Connections
DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper
Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models
octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa
Convolutional Neural Network for 3D meshes in PyTorch
MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).
LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)
Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of
Adaptive, interpretable wavelets across domains (NeurIPS 2021)
Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo
Warren - Stock Price Predictor
Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.
Code for "Generative adversarial networks for reconstructing natural images from brain activity".
Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22
SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in
CVNets: A library for training computer vision networks
CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it
Facilitates implementing deep neural-network backbones, data augmentations
Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A
Meta graph convolutional neural network-assisted resilient swarm communications
Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks
ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip
Implements Stacked-RNN in numpy and torch with manual forward and backward functions
Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution
nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted
A PyTorch-centric hybrid classical-quantum machine learning framework
torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh
MEND: Model Editing Networks using Gradient Decomposition
MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"
Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin