3636 Repositories
Python data-efficient-gan-training Libraries
A tool to nowcast quarterly data with monthly indicators: US consumption example
MIDAS_Nowcaster A tool to nowcast quarterly data with monthly indicators: US consumption example Pulls data directly from FRED from a list of codes -
Data Exfiltration without ever making a connection. Using TCP header space.
TCPwned PoC toy code to exfiltrate data without ever making a TCP connection. This will never show up in firewall logs, much less, actually be monitor
A simple framwork to streamline the Domain Adaptation training process.
FastDA Introduction This is a simple framework for domain adaptation training. You can use it to build your own training process. It heavily relies on
Upgini : data search library for your machine learning pipelines
Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:
A light weight data augmentation tool for training CNNs and Viola Jones detectors
hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six
Open source annotation tool for machine learning practitioners.
doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ
Tools for curating biomedical training data for large-scale language modeling
Tools for curating biomedical training data for large-scale language modeling
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.
The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"
pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo
Source code for "Efficient Training of BERT by Progressively Stacking"
Introduction This repository is the code to reproduce the result of Efficient Training of BERT by Progressively Stacking. The code is based on Fairseq
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
Understanding the Difficulty of Training Transformers
Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"
EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)
BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Revisiting Self-Training for Few-Shot Learning of Language Model.
SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training
ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.
Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho
The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.
Example code of [Tianchi AAAI2022 Security AI Challenger Program Phase 8]
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)
DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo
Data preprocessing rosetta parser for python
datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,
Async boto3 with Autogenerated Data Classes
awspydk Async boto3 with Autogenerated JIT Data Classes Motivation This library is forked from an internal project that works with a lot of backend AW
Efficient training of deep recommenders on cloud.
HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and
A command line tool that creates a super timeline from SentinelOne's Deep Visibility data
S1SuperTimeline A command line tool that creates a super timeline from SentinelOne's Deep Visibility data What does it do? The script accepts a S1QL q
Visualize your pandas data with one-line code
PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand
A Pythonic framework for threat modeling
pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).
Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis
HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi
Self-Supervised Image Denoising via Iterative Data Refinement
Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S
Data Consistency for Magnetic Resonance Imaging
Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin
Automatic Data-Regularized Actor-Critic (Auto-DrAC)
Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)
[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"
BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️
Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)
EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback
Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L
Auditing Black-Box Prediction Models for Data Minimization Compliance
Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive
TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.
Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"
G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data
A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization
Equivariant layers for RC-complement symmetry in DNA sequence data
Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co
Hide sensitive information in images
Data-Preserved Script allowing to blur the most sensitive information on images. Prerequisites Before you begin, ensure you have met the following req
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.
Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol
A paper list of pre-trained language models (PLMs).
Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.
Sign data using symmetric-key algorithm encryption.
Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algorithms are allowed. Useful shortcut functions for signing (and validating) dictionaries and URLs.
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms
MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is
DCGAN LSGAN WGAN-GP DRAGAN PyTorch
Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio
Minimalistic PyTorch training loop
Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l
Primitives for machine learning and data science.
An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021
Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl
An helper library to scrape data from Instagram effortlessly, using the Influencer Hunters APIs.
Instagram Scraper An utility library to scrape data from Instagram hassle-free Go to the website » View Demo · Report Bug · Request Feature About The
tradingview socket api for fetching real time prices.
tradingView-API tradingview socket api for fetching real time prices. How to run git clone https://github.com/mohamadkhalaj/tradingView-API.git cd tra
This repository is used to provide data to zzhack,
This repository is used to provide data to zzhack, but you don't have to care about anything, just write your thinking down, and you can see your thinking is rendered in zzhack perfectly
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository provides the official PyTorch implementation
Scrapping the data from each page of biocides listed on the BAUA website into a csv file
Scrapping the data from each page of biocides listed on the BAUA website into a csv file
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
Experiments with Fourier layers on simulation data.
Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo
The first GANs-based omics-to-omics translation framework
OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".
FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"
Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding
Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling
Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching
Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.
A program that analyzes data from inertia measurement units installed in aircraft and generates g-exceedance curves.
Data wrangling & common calculations for results from qMem measurement software
qMem Datawrangler This script processes output of qMem measurement software into an Origin ® compatible *.csv files and matplotlib graphs to quickly v
Django based webapp pulling in crypto news and price data via api
Deploy Django in Production FTA project implementing containerization of Django Web Framework into Docker to be placed into Azure Container Services a
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.
League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.
SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved
🛰️ Scripts démontrant l'utilisation de l'imagerie RADARSAT-1 à partir d'un seau AWS | 🛰️ Scripts demonstrating the use of RADARSAT-1 imagery from an AWS bucket
🛰️ Scripts démontrant l'utilisation de l'imagerie RADARSAT-1 à partir d'un seau AWS | 🛰️ Scripts demonstrating the use of RADARSAT-1 imagery from an AWS bucket
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting
Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.
Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python
This repository contains the source code of our work on designing efficient CNNs for computer vision
Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P
Tooling for GANs in TensorFlow
TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip
A real world application of a Recurrent Neural Network on a binary classification of time series data
What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data
PyTorch common framework to accelerate network implementation, training and validation
pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"
CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2
APIlocal_dbAWS_RDS - Disclaimer! All data used is for educational purposes only.
APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe
Flexible time series feature extraction & processing
tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful
DuBE: Duple-balanced Ensemble Learning from Skewed Data
DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S
Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh
IMBENS: class-imbalanced ensemble learning in Python.
IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.
Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".
Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer
Deep Learning Emotion decoding using EEG data from Autism individuals
Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D
This repository contains all code and data for the Inside Out Visual Place Recognition task
Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio