3576 Repositories
Python deep-belief-network Libraries
Deep ViT Features as Dense Visual Descriptors
dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe
Heart Arrhythmia Classification
This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for classification purposes.
NLP applications using deep learning.
NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem
Multi-label classification of retinal disorders
Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn
Project ArXiv Citation Network
Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses
Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss
follow-analyzer helps GitHub users analyze their following and followers relationship
follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models
NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients
Self-Supervised Deep Blind Video Super-Resolution
Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness
HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt
GAN-based Matrix Factorization for Recommender Systems
GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
A deep learning framework for historical document image analysis
DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of
Change Detection in SAR Images Based on Multiscale Capsule Network
SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN
Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an
Low Complexity Channel estimation with Neural Network Solutions
Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices
EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.
DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'
Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies
An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)
CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper
Blind Video Temporal Consistency via Deep Video Prior
deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web
Labelme is a graphical image annotation tool, It is written in Python and uses Qt for its graphical interface
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).
Predict the spans of toxic posts that were responsible for the toxic label of the posts
toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻♂️
This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory
Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of
This library provides an abstraction to perform Model Versioning using Weight & Biases.
Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch
Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin
netpy - more than implementation of netcat 🐍🔥
netpy - more than implementation of netcat 🐍🔥
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation
AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo
idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su
Neural Tangent Generalization Attacks (NTGA)
Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning
Neural Network Just a basic Neural Network module Usage Example Importing Module
PcapConverter - A project for generating 15min frames out of a .pcap file containing network traffic
CMB Assignment 02 code + notebooks This is a project for containing code for the
This is a Deep Leaning API for classifying emotions from human face and human audios.
Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers
Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications
Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s
CVAT is free, online, interactive video and image annotation tool for computer vision
Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs
CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair
Simple and understandable swin-transformer OCR project
swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms Key Features • Getting Started • Docs • License Introd
Awesome Transformers in Medical Imaging
This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"
ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)
T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation
SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by
List of awesome things around semantic segmentation 🎉
Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks
Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images
Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments
Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur
Deep Learning to Improve Breast Cancer Detection on Screening Mammography
Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network
This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning
Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi
🛰️ Awesome Satellite Imagery Datasets
Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase
Learning to Segment Instances in Videos with Spatial Propagation Network
Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.
self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks
NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th
Seg-Torch for Image Segmentation with Torch
Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is
CN24 is a complete semantic segmentation framework using fully convolutional networks
Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio
Segment axon and myelin from microscopy data using deep learning
Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as either axon, myelin or background.
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency
[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Natural Posterior Network This repository provides the official implementation o
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"
Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat
A deep neural networks for images using CNN algorithm.
Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.
News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore
[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course is Prof. Lu Shijian.
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch
NuPIC Studio is an all-in-one tool that allows users create a HTM neural network from scratch
NuPIC Studio is an all-in-one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visualization tool but an HTM builder, debugger and laboratory for experiments. It is ideal for newbies with little intimacy with NuPIC code as well as experts that wish a better productivity. Among its features and advantages:
Real life contra a deep learning project built using mediapipe and openc
real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni
An curated collection of awesome resources about networking in cybersecurity
An ongoing curated collection of awesome software, libraries, frameworks, talks & videos, best practices, learning tutorials and important practical resources about networking in cybersecurity
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework
neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see
Dive into Machine Learning
Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the computational graph.
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
IPV4 network calculation project in Python
Curso de Python 3 do Básico ao Avançado Desafio: Calculando redes IPV4 Criar um programa que obtem um numero de IP com o prefixo da mascara de rede. O
This is an open solution to the Home Credit Default Risk challenge 🏡
Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat