1017 Repositories
Python graph-domain-adaptation Libraries
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure
Magicspoofing - A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name
A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name. This project is for educational use, we are not responsible for its misuse.
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors
GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the computational graph.
ECLARE: Extreme Classification with Label Graph Correlations
ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification
GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark
Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods
Separation of Mainlobes and Sidelobes in the Ultrasound Image Based on the Spatial Covariance (MIST) and Aperture-Domain Spectrum of Received Signals
Separation of Mainlobes and Sidelobes in the Ultrasound Image Based on the Spatial Covariance (MIST) and Aperture-Domain Spectrum of Received Signals
DP2 graph edit codes.
必要なソフト・パッケージ Python3 Numpy JSON Matplotlib 動作確認環境 MacBook Air M1 Python 3.8.2 (arm64) Numpy 1.22.0 Matplotlib 3.5.1 JSON 2.0.9 使い方 draw_time_histgram(
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int
a list of disposable and temporary email address domains
List of disposable email domains This repo contains a list of disposable and temporary email address domains often used to register dummy users in ord
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks
GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference
LibMTL: A PyTorch Library for Multi-Task Learning
LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021
Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro
MSDorkDump is a Google Dork File Finder that queries a specified domain name and variety of file extensions
MSDorkDump is a Google Dork File Finder that queries a specified domain name and variety of file extensions (pdf, doc, docx, etc), and downloads them.
Reimplementation of Learning Mesh-based Simulation With Graph Networks
Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js
Node-level Graph Regression with Deep Gaussian Process Models
Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing
FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing
Tree-based Search Graph for Approximate Nearest Neighbor Search
TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials, and online demo for beginners.
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame
VisionKG: Vision Knowledge Graph
VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection
PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization
Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021
Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera
Dagon - An Asynchronous Task Graph Execution Engine
Dagon - An Asynchronous Task Graph Execution Engine Dagon is a job execution sys
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks
Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of
This is the course project of AI3602: Data Mining of SJTU
This is the course project of AI3602: Data Mining of SJTU. Group Members include Jinghao Feng, Mingyang Jiang and Wenzhong Zheng.
Atomistic Line Graph Neural Network
Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs
Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"
LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.
ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin
This repo includes some graph-based CTR prediction models and other representative baselines.
Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F
Security audit Python project dependencies against security advisory databases.
Security audit Python project dependencies against security advisory databases.
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.
PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models
tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices
Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data
1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep
A simple version for graphfpn
GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).
FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req
This application aims to read all wifi passwords and visualizes the complexity in graph formation by taking into account several criteria and help you generate new random passwords.
This application aims to read all wifi passwords and visualizes the complexity in graph formation by taking into account several criteria and help you generate new random passwords.
Template repo for a GCP-hosted REST API with automatic API versioning and custom domain mapping
Python + Poetry REST API with FastAPI, hosted on GCP This template will get you ready to deploy a FastAPI app in Google Cloud with automatic API versi
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".
Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021
Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p
Robustness via Cross-Domain Ensembles
Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21
Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.
Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ
Train Scene Graph Generation for Visual Genome and GQA in PyTorch = 1.2 with improved zero and few-shot generalization.
Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)
Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y
A library for graph deep learning research
Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?
A Telegram crawler to search groups and channels automatically and collect any type of data from them.
Introduction This is a crawler I wrote in Python using the APIs of Telethon months ago. This tool was not intended to be publicly available for a numb
Find graph motifs using intuitive notation
d o t m o t i f Find graph motifs using intuitive notation DotMotif is a library that identifies subgraphs or motifs in a large graph. It looks like t
Whois-Python - Get Whois Domain with Python GUI
Whois-Python-GUI Get Whois Domain with Python - GUI :) WARNING Dont Copy ! - W
Heroku Cloudflare App Domain
Heroku Cloudflare App Domain Creating branded herokuapp.com-like domains using Cloudflare, based on the app name (eg my-app-prod.example.com). Feature
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization
CSAC Introduction This repository contains the implementation code for paper: Co
Code for paper "Multi-level Disentanglement Graph Neural Network"
Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!
✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.
TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition
KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.
mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling
Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN
Self-supervised learning optimally robust representations for domain generalization.
OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".
cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"
MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI
A collection of implementations of deep domain adaptation algorithms
Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"
CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning
MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀
Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.
DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation
MDMM - Learning multi-domain multi-modality I2I translation
Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation
Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle
Glyph-graph - A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas
Glyth Graph Revision for 0.01 A simple, yet versatile, package for graphing equations on a 2-dimensional text canvas List of contents: Brief Introduct
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph
Total number of Spanning Trees in a Graph This is a python script just written f
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘
Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)
G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
CCCL: Contrastive Cascade Graph Learning.
CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr
GitHub Activity Generator - A script that helps you instantly generate a beautiful GitHub Contributions Graph for the last year.
GitHub Activity Generator A script that helps you instantly generate a beautiful GitHub Contributions Graph for the last year. Before 😐 😶 😒 After ?
Run CodeServer on Google Colab using Inlets in less than 60 secs using your own domain.
Inlets Colab Run CodeServer on Colab using Inlets in less than 60 secs using your own domain. Features Optimized for Inlets/InletsPro Use your own Cus
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).
GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv
Graph Representation Learning via Graphical Mutual Information Maximization
GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pretraining on Dynamic Graph Neural Networks
Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)
Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However
Heterogeneous Deep Graph Infomax
Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"
Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu
A Python server and client app that tracks player session times and server status
MC Outpost A Python server and client application that tracks player session times and server status About MC Outpost provides a session graph and ser
Scientific measurement library for instruments, experiments, and live-plotting
PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a