7047 Repositories
Python learning-with-limited-labeled-data Libraries
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods
ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).
Code for Active Learning at The ImageNet Scale.
Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.
Python script for diving image data to train test and val
dataset-division-to-train-val-test-python python script for dividing image data to train test and val If you have an image dataset in the following st
TeST: Temporal-Stable Thresholding for Semi-supervised Learning
TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-
Yaml - Loggers are like print() statements
Upgrade your print statements Loggers are like print() statements except they also include loads of other metadata: timestamp msg (same as print!) arg
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.
Data repo for one-among.us
Our Data Data repo for one-among.us File Structure Directory /people/userid/: Data for a specific person info.json5: Profile information page.md: Pr
Pydantic based mock data generation
This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and ormar.
Maze generator and solver with python
Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems
PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training frameworks for reinforcement learning (RL).
Helping you manage your data science projects sanely.
PyDS CLI Helping you manage your data science projects sanely. Requirements Anaconda/Miniconda/Miniforge/Mambaforge (Mambaforge recommended!) git on y
Source files for the data lake demo video using the AWS TICKIT database
Data Lake Demo Source code for video demonstration detailed in the post, Building a Simple Data Lake on AWS . Build a simple data lake on AWS using a
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.
scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"
MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning
Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.
Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel
KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v
Semi-Supervised Learning for Fine-Grained Classification
Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G
Self-Regulated Learning for Egocentric Video Activity Anticipation
Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.
ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'
Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y
Code for testing convergence rates of Lipschitz learning on graphs
📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems
Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".
PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra
Reproduced Code for Image Forgery Detection papers.
Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s
OpenMMLab Text Detection, Recognition and Understanding Toolbox
Introduction English | 简体ä¸æ–‡ MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi
OpenMMLab Image Classification Toolbox and Benchmark
Introduction English | 简体ä¸æ–‡ MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.
Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.
Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the
Code release for Local Light Field Fusion at SIGGRAPH 2019
Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.
Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:
eBay's TSV Utilities: Command line tools for large, tabular data files. Filtering, statistics, sampling, joins and more.
Command line utilities for tabular data files This is a set of command line utilities for manipulating large tabular data files. Files of numeric and
🧪 Cutting-edge experimental spaCy components and features
spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer
Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como código Utuilizando um cluster Kubernetes na Azure Ingestão
Anytime Learning At Macroscale
On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core
Web scraped S&P 500 Data from Wikipedia using Pandas and performed Exploratory Data Analysis on the data.
Web scraped S&P 500 Data from Wikipedia using Pandas and performed Exploratory Data Analysis on the data. Then used Yahoo Finance to get the related stock data and displayed them in the form of charts.
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning
DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning
ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a
Learning Logic Rules for Document-Level Relation Extraction
LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)
DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control
Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)
MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Repository of best practices for deep learning in Julia, inspired by fastai
FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena
The fastai book, published as Jupyter Notebooks
English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.
Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-
🔊 Audio and fastai v2
Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe
Walk with fastai
Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p
Extension to fastai for volumetric medical data
FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.
Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q
A fastai/PyTorch package for unpaired image-to-image translation.
Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...
A modular domain adaptation library written in PyTorch.
A modular domain adaptation library written in PyTorch.
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning
MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"
Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P
The Most Efficient Temporal Difference Learning Framework for 2048
moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar
MLJetReconstruction - using machine learning to reconstruct jets for CMS
MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)
Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF
Curating a dataset for bioimage transfer learning
CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio
Project5 Data processing system
Project5-Data-processing-system User just needed to copy both these file to a folder and open Project5.py using cmd or using any python ide. It is to
Epidemiology analysis package
zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is
Explorative Data Analysis Guidelines
Explorative Data Analysis Get data into a usable format! Find out if the following predictive modeling phase will be successful! Combine everything in
cleanlab is the data-centric ML ops package for machine learning with noisy labels.
cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear
Data imputations library to preprocess datasets with missing data
Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex
dirty_cat is a Python module for machine-learning on dirty categorical variables.
dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.
Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.
A Guide for Feature Engineering and Feature Selection, with implementations and examples in Python.
Feature Engineering & Feature Selection A comprehensive guide [pdf] [markdown] for Feature Engineering and Feature Selection, with implementations and
stability-selection - A scikit-learn compatible implementation of stability selection
stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.
Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use
A Domain-Agnostic Benchmark for Self-Supervised Learning
DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv
Dump Data from FTDI Serial Port to Binary File on MacOS
Dump Data from FTDI Serial Port to Binary File on MacOS
Crypto Stats and Tweets Data Pipeline using Airflow
Crypto Stats and Tweets Data Pipeline using Airflow Introduction Project Overview This project was brought upon through Udacity's nanodegree program.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf
A package to predict protein inter-residue geometries from sequence data
trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte
Deep and online learning with spiking neural networks in Python
Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place
68 keypoint annotations for COFW test data
68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)
tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0
Centralized whale instance using github actions, sourcing metadata from bigquery-public-data.
Whale Demo Instance: Bigquery Public Data This is a fully-functioning demo instance of the whale data catalog, actively scraping data from Bigquery's
Current state of supervised and unsupervised depth completion methods
Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv
Katana project is a template for ASAP 🚀 ML application deployment
Katana project is a FastAPI template for ASAP 🚀 ML API deployment
Discovering Interpretable GAN Controls [NeurIPS 2020]
GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)
FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi
An interactive UMAP visualization of the MNIST data set.
Code for an interactive UMAP visualization of the MNIST data set. Demo at https://grantcuster.github.io/umap-explorer/. You can read more about the de
A high-performance topological machine learning toolbox in Python
giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G
Single-Cell Analysis in Python. Scales to 1M cells.
Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others
livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A