2127 Repositories
Python machine-care Libraries
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)
PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application
Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta
BudouX is the successor to Budou, the machine learning powered line break organizer tool.
BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.
Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is
Keyword spotting on Arm Cortex-M Microcontrollers
Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"
L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.
BOF-Roaster is an automated buffer overflow exploit machine which is begin written with Python 3.
BOF-Roaster is an automated buffer overflow exploit machine which is begin written with Python 3. On first release it was able to successfully break many of the most well-known buffer overflow example executables.
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel
KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.
ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems
Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro
Reproduced Code for Image Forgery Detection papers.
Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s
🧪 Cutting-edge experimental spaCy components and features
spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)
MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes
The fastai book, published as Jupyter Notebooks
English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc
Walk with fastai
Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.
Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...
A modular domain adaptation library written in PyTorch.
A modular domain adaptation library written in PyTorch.
The Most Efficient Temporal Difference Learning Framework for 2048
moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar
MLJetReconstruction - using machine learning to reconstruct jets for CMS
MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.
cleanlab is the data-centric ML ops package for machine learning with noisy labels.
cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex
dirty_cat is a Python module for machine-learning on dirty categorical variables.
dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality with fit() and transform() methods to first learn the transforming parameters from data and then transform the data.
A Guide for Feature Engineering and Feature Selection, with implementations and examples in Python.
Feature Engineering & Feature Selection A comprehensive guide [pdf] [markdown] for Feature Engineering and Feature Selection, with implementations and
stability-selection - A scikit-learn compatible implementation of stability selection
stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.
Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm
Deep and online learning with spiking neural networks in Python
Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)
tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0
Current state of supervised and unsupervised depth completion methods
Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv
Katana project is a template for ASAP 🚀 ML application deployment
Katana project is a FastAPI template for ASAP 🚀 ML API deployment
A high-performance topological machine learning toolbox in Python
giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G
Single-Cell Analysis in Python. Scales to 1M cells.
Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc
Streamlit — The fastest way to build data apps in Python
Welcome to Streamlit 👋 The fastest way to build and share data apps. Streamlit lets you turn data scripts into sharable web apps in minutes, not week
The purpose of this project is to share knowledge on how awesome Streamlit is and can be
Awesome Streamlit The fastest way to build Awesome Tools and Apps! Powered by Python! The purpose of this project is to share knowledge on how Awesome
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.
An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.
Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.
InfiniteBoost: building infinite ensembles with gradient descent
InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams
A fast, efficient universal vector embedding utility package.
Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi
ETNA – time series forecasting framework
ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an
Python module for data science and machine learning users.
dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects
KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst
An Active Automata Learning Library Written in Python
AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core
Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈
Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat
Deep Learning with PyTorch made easy 🚀 !
Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.
torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.
lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo
Management of exclusive GPU access for distributed machine learning workloads
TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting
Convert Text-to Handwriting Using Python
Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t
Stanza: A Python NLP Library for Many Human Languages
Official Stanford NLP Python Library for Many Human Languages
A crash course in six episodes for software developers who want to become machine learning practitioners.
Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P
Utilities for preprocessing text for deep learning with Keras
Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process
How to use TensorLayer
How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay
AutoML library for deep learning
Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras
Code for the TCAV ML interpretability project
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX
Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
zeus is a Python implementation of the Ensemble Slice Sampling method.
zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S
Projeto: Machine Learning: Linguagens de Programacao 2004-2001
Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2
A Python step-by-step primer for Machine Learning and Optimization
early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.
Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da
A machine learning project that predicts the price of used cars in the UK
Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t
Multiple implementations for abstractive text summurization , using google colab
Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i
BERT score for text generation
BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in
Machine learning notebooks in different subjects optimized to run in google collaboratory
Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the
Tutorials, assignments, and competitions for MIT Deep Learning related courses.
MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning
TensorFlow Tutorials with YouTube Videos
TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne
Python solutions to solve practical business problems.
Python Business Analytics Also instead of "watching" you can join the link-letter, it's already being sent out to about 90 people and you are free to
Source for the paper "Universal Activation Function for machine learning"
Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors
By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data
Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.
Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr
Python Automated Machine Learning library for tabular data.
Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie
Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua
K-Means clusternig example with Python and Scikit-learn
Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface
pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla
A desktop GUI providing an audio interface for GPT3.
Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven
Data Version Control or DVC is an open-source tool for data science and machine learning projects
Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj
Binary LSTM model for text classification
Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re
A music recommendation REST API which makes a machine learning algorithm work with the Django REST Framework
music-recommender-rest-api A music recommendation REST API which makes a machine learning algorithm work with the Django REST Framework How it works T
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.
Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us
Use unsupervised and supervised learning to predict stocks
AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n
Introducing neural networks to predict stock prices
IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o
This is a Machine Learning model which predicts the presence of Diabetes in Patients
Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s
Apply different text recognition services to images of handwritten documents.
Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume
AI-powered literature discovery and review engine for medical/scientific papers
AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)
PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J
An interactive dashboard for visualisation, integration and classification of data using Active Learning.
AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python
FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour