3056 Repositories
Python model-change-paper Libraries
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.
A custom DeepStack model that has been trained detecting ONLY the USPS logo
This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not contain USPS.
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT
Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation
FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning
ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment
CBO’s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.
Interactive Dashboard for Visualizing OSM Data Change
Dashboard and intuitive data downloader for more interactive experience with interpreting osm change data.
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"
ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com
Tutorial page of the Climate Hack, the greatest hackathon ever
Tutorial page of the Climate Hack, the greatest hackathon ever
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption
⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor
Customised to detect objects automatically by a given model file(onnx)
LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features
Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"
InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.
Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes
Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i
Data and code accompanying the paper Politics and Virality in the Time of Twitter
Politics and Virality in the Time of Twitter Data and code accompanying the paper Politics and Virality in the Time of Twitter. In specific: the code
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)
HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive
This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies
ES_OTN_Public Carlos Güemes Palau, Paul Almasan, Pere Barlet Ros, Albert Cabellos Aparicio Contact us: [email protected], contactus@bn
A model which classifies reviews as positive or negative.
SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans
Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation
Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that generalizes score-based models to fully nonlinear forward and backward diffusions.
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions
Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.
CRF-RNN for Semantic Image Segmentation - PyTorch version
This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015
Python inverse kinematics for your robot model based on Pinocchio.
Python inverse kinematics for your robot model based on Pinocchio.
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification
IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for
This machine learning model was developed for House Prices
This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.
R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Evaluate on three different ML model for feature selection using Breast cancer data.
Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.
Breast cancer is been classified into benign tumour and malignant tumour.
Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.
Breast Cancer Classification Model is applied on a different dataset
Breast Cancer Classification Model is applied on a different dataset
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.
VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built
Python script for crawling ResearchGate.net papers✨⭐️📎
ResearchGate Crawler Python script for crawling ResearchGate.net papers About the script This code start crawling process by urls in start.txt and giv
Bert4rec for news Recommendation
News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection
Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru
This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.
Implementation of the SUMO (Slim U-Net trained on MODA) model
SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava
Training a deep learning model on the noisy CIFAR dataset
Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai
A machine learning model for Covid case prediction
CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning
DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It
The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
bct_file_generator_for_EasyGSH The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.
This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos
Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)
Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC
Used for data processing in machine learning, and help us to construct ML model more easily from scratch
Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.
CLNTM - Contrastive Learning for Neural Topic Model
Contrastive Learning for Neural Topic Model This repository contains the impleme
Tampilan - Change Termux Appearance With Python
Tampilan Gambar usage pkg update && pkg upgrade pkg install git && pkg install f
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid symptoms or not by simply inputting certain values like oxygen level , breath rate , age, Vaccination done or not etc. with the help of kaggle database.
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling
deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax
Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables
Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.
TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.
Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o
LSTM model - IMDB review sentiment analysis
NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on
This is a working model for which I have used python.
Jarvis_voiceAssistance This is a working model for which I have used python. This model can: 1)Play a video or song on youtube. 2)Tell us time. 3)Tell
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper
Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".
GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.
Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.
MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid
RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. Unlike other versions of the model we use BERT for text encoder and SWIN transformer for image encoder.
ruCLIP-SB RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and re
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers
Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"
FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering
Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C
Hand gesture recognition model that can be used as a remote control for a smart tv.
Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon
Heart Arrhythmia Classification
This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for classification purposes.
RobustVideoMatting and background composing in one model by using onnxruntime.
RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam
A model to classify a piece of news as REAL or FAKE
Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.
MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection
Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c
This repository contains the raw data and a python notebook to ingest historical A&E attendance data and then use a simple Prophet model to predict the number of A&E attendances in England if the COVID-19 pandemic had not happened
ae_attendances_modelling This repository contains the raw data and a python notebook to ingest historical A&E attendance data and then use a simple Pr
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2
GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.
Annotate datasets with a semi-trained or fully trained YOLOv5 model
YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."
Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al
smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou
High-fidelity 3D Model Compression based on Key Spheres
High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness
HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model
Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On
UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime
Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n