1978 Repositories
Python transformer-networks Libraries
Learning Synthetic Environments and Reward Networks for Reinforcement Learning
Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"
TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion
MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi
A python package to fine-tune transformer-based models for named entity recognition (NER).
nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials
TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.
Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe
OMLT: Optimization and Machine Learning Toolkit
OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch
C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling
Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction
EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks
Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.
Fortuitous Forgetting in Connectionist Networks
Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp
This project uses ViT to perform image classification tasks on DATA set CIFAR10.
Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA
A Novel Plug-in Module for Fine-grained Visual Classification
Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.
Pytorch implementation of MaskGIT: Masked Generative Image Transformer
Pytorch implementation of MaskGIT: Masked Generative Image Transformer
Non-Vacuous Generalisation Bounds for Shallow Neural Networks
This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)
A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.
Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"
Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound
FewBit — a library for memory efficient training of large neural networks
FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression
Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S
DiffStride: Learning strides in convolutional neural networks
DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initialized with an arbitrary value at each layer (e.g. (2, 2) and during training its strides will be optimized for the task at hand.
NeuralForecast is a Python library for time series forecasting with deep learning models
NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate model benchmarks and SOTA models implemented in PyTorch and PyTorchLightning.
This repository has automation content to test Arista devices.
Network tests automation Network tests automation About this repository Requirements Requirements on your laptop Requirements on the switches Quick te
A transformer which can randomly augment VOC format dataset (both image and bbox) online.
VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in
CRF-RNN for Semantic Image Segmentation - PyTorch version
This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks
This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle
Generate Cartoon Images using Generative Adversarial Network
AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.
pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D
Semantic Segmentation Architectures Implemented in PyTorch
pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i
Evaluation framework for testing segmentation networks in PyTorch
Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!
Example of semantic segmentation in Keras
keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o
Generative Flow Networks for Discrete Probabilistic Modeling
Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks
Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)
ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"
Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)
Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.
traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to
This repo contains the code required to train the multivariate time-series Transformer.
Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks
DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)
MoRecon - A tool for reconstructing missing frames in motion capture data.
MoRecon - A tool for reconstructing missing frames in motion capture data.
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)
Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax
Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex
LSTM model - IMDB review sentiment analysis
NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.
1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (
DocEnTr: An end-to-end document image enhancement transformer
DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to
RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. Unlike other versions of the model we use BERT for text encoder and SWIN transformer for image encoder.
ruCLIP-SB RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and re
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)
machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers
Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap
PyTorch implementation of "VRT: A Video Restoration Transformer"
VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"
FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses
Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu
Decision Transformer: A brand new Offline RL Pattern
DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner
Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges
GAN-based Matrix Factorization for Recommender Systems
GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing
This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
Geometric Interpretation of Matrix Square Root and Inverse Square Root
Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision Transformer embedded between the encoder and decoder layers.
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime
Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n
Leaf: Multiple-Choice Question Generation
Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification
This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac
Transformer based SAR image despeckling
Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks
AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]
Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.
GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit
Do Neural Networks for Segmentation Understand Insideness?
This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.
DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to
Explanatory Learning: Beyond Empiricism in Neural Networks
Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)
Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n
Post-training Quantization for Neural Networks with Provable Guarantees
Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Ray
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻♂️
This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch
Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin
What can linearized neural networks actually say about generalization?
What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"
GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,
FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation
EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The
Noether Networks: meta-learning useful conserved quantities
Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network
On the Adversarial Robustness of Visual Transformer
On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"
DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2
RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset
Vit-ImageClassification Introduction This project uses ViT to perform image clas
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs
STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin
Simple and understandable swin-transformer OCR project
swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r