7361 Repositories
Python Neural-Semi-Supervised-Learning-for-Text-Classification Libraries
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)
Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘
Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)
G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A
SemiNAS: Semi-Supervised Neural Architecture Search
SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian
Meta Learning for Semi-Supervised Few-Shot Classification
few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data
Scaling and Benchmarking Self-Supervised Visual Representation Learning
FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
CCCL: Contrastive Cascade Graph Learning.
CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne
A minimal and ridiculously good looking command-line-interface toolkit
Proper CLI Proper CLI is a Python package for creating beautiful, composable, and ridiculously good looking command-line-user-interfaces without havin
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.
DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.
Remote sensing change detection using PaddlePaddle
Change Detection Laboratory Developing and benchmarking deep learning-based remo
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
The code of Zero-shot learning for low-light image enhancement based on dual iteration
Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark
OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).
GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv
Graph Representation Learning via Graphical Mutual Information Maximization
GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pretraining on Dynamic Graph Neural Networks
Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L
Contrastive Learning of Structured World Models
Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)
Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However
Contrastive Multi-View Representation Learning on Graphs
Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"
Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)
Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.
Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".
No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
A curated list of awesome Model-Based RL resources
Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
In this work, we will implement some basic but important algorithm of machine learning step by step.
WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
Encode and decode text application
Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1
Numerical Methods with Python, Numpy and Matplotlib
Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe
A retro text-to-speech bot for Discord
hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.
Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work
A Python parser that takes the content of a text file and then reads it into variables.
Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -
Text to Binary Converter
Text to Binary Converter Programmed in Python | PySimpleGUI If you like it give it a star How it works Simple text to binary and binary to text conver
Python library for parsing resumes using natural language processing and machine learning
CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the
🔀 Visual Room Rearrangement
AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha
A markdown extension for converting Leiden+ epigraphic text to TEI XML/HTML
LeidenMark $ pip install leidenmark A Python Markdown extension for converting Leiden+ epigraphic text to TEI XML/HTML. Inspired by the Brill plain te
A timer for bird lovers, plays a random birdcall while displaying its image and info.
Birdcall Timer A timer for bird lovers. Siriema hatchling by Junior Peres Junior Background My partner needed a customizable timer for sitting and sta
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,
O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin
A webpage that utilizes machine learning to extract sentiments from tweets.
Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"
On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch
CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."
pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions
🇰🇷 Text to Image in Korean
KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H
General neural ODE and DAE modules for power system dynamic modeling.
Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample
N-Omniglot is a large neuromorphic few-shot learning dataset
N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.
模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)
Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks
The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge Structural Database and the CoRE_MOF 2019 dataset.
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".
Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513
MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .
For storing the complete exploration of Visual Question Answering for our B.Tech Project
Multi-Image vqa @authors: Akhilesh, Janhavi, Harsh Paper summary, Ideas tried and their corresponding results: on wiki Other discussions: on discussio
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm
Code for "SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism"
SUGAR Code for "SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism" Overview train.py: the cor
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions
NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"
SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper
Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.
Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"
SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"
GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa
Subgraph Based Learning of Contextual Embedding
SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da
Deeper insights into graph convolutional networks for semi-supervised learning
deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt
code for "Self-supervised edge features for improved Graph Neural Network training", arxivlink
Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages
DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program
A Self-Supervised Contrastive Learning Framework for Aspect Detection
AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21
Self-Guided Contrastive Learning for BERT Sentence Representations
Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning
Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)
Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis
Self-supervised Label Augmentation via Input Transformations (ICML 2020)
Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"
Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"
Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea
Unsupervised Representation Learning by Invariance Propagation
Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"
Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]
Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.
Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,
Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast
Code and training data for our ECCV 2016 paper on Unsupervised Learning
Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)
Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'
Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".
PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".