3172 Repositories
Python deep-graph-infomax Libraries
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.
Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is
Keyword spotting on Arm Cortex-M Microcontrollers
Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"
L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"
AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De
SpinalNet: Deep Neural Network with Gradual Input
SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.
Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods
ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.
Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".
SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*
Tandem Mass Spectrum Prediction with Graph Transformers
MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.
ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'
Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.
Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne
This is the official PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".
Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems
Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro
OpenMMLab Text Detection, Recognition and Understanding Toolbox
Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi
OpenMMLab Image Classification Toolbox and Benchmark
Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.
Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.
Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the
Code release for Local Light Field Fusion at SIGGRAPH 2019
Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19
2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning
ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a
Graph parsing approach to structured sentiment analysis.
Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.
Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)
MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes
Switch spaces for knowledge graph embeddings
SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Repository of best practices for deep learning in Julia, inspired by fastai
FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena
The fastai book, published as Jupyter Notebooks
English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc
🔊 Audio and fastai v2
Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.
Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
An Agnostic Object Detection Framework IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-q
Fast style transfer
faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor
A fastai/PyTorch package for unpaired image-to-image translation.
Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a
A modular domain adaptation library written in PyTorch.
A modular domain adaptation library written in PyTorch.
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.
DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"
Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)
Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".
Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re
VR-Caps: A Virtual Environment for Active Capsule Endoscopy
VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov
Deep and online learning with spiking neural networks in Python
Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place
Discovering Interpretable GAN Controls [NeurIPS 2020]
GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others
livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A
Streamlit — The fastest way to build data apps in Python
Welcome to Streamlit 👋 The fastest way to build and share data apps. Streamlit lets you turn data scripts into sharable web apps in minutes, not week
ETNA – time series forecasting framework
ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.
Detectron2 for Document Layout Analysis
Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research
Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open
Naszilla is a Python library for neural architecture search (NAS)
A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈
Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat
TransMorph: Transformer for Medical Image Registration
TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati
Deep Learning with PyTorch made easy 🚀 !
Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c
Python package for missing-data imputation with deep learning
MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant
A Python package for performing pore network modeling of porous media
Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...
Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported
DA2Lite is an automated model compression toolkit for PyTorch.
DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari
Management of exclusive GPU access for distributed machine learning workloads
TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting
Optimal skincare partition finder using graph theory
Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl
Stanza: A Python NLP Library for Many Human Languages
Official Stanford NLP Python Library for Many Human Languages
Utilities for preprocessing text for deep learning with Keras
Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process
How to use TensorLayer
How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay
AutoML library for deep learning
Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras
Latex code for making neural networks diagrams
PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l
Keras implementation of AdaBound
AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •
AI Toolkit for Healthcare Imaging
Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am
A distributed deep learning framework that supports flexible parallelization strategies.
FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab
DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y
Multiple implementations for abstractive text summurization , using google colab
Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x
Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati
XLNet: Generalized Autoregressive Pretraining for Language Understanding
Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.
Lab Materials for MIT 6.S191: Introduction to Deep Learning
This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available
Deep learning for NLP crash course at ABBYY.
Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa
Deep Learning tutorials in jupyter notebooks.
DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi
Tutorials, assignments, and competitions for MIT Deep Learning related courses.
MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning
TensorFlow Tutorials with YouTube Videos
TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of
Real-time analysis of intracranial neurophysiology recordings.
py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De
It's an application to calculate I from v and r. It can also plot a graph between V vs I.
Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features
CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".
GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"
corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.
AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集
English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.
Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)
GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network
Easy to start. Use deep nerual network to predict the sentiment of movie review.
Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1 score 92.
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.
TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut