6302 Repositories
Python deep-learning-models Libraries
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.
SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on
Some methods for comparing network representations in deep learning and neuroscience.
Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation
DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning
Source code for deep symbolic optimization.
Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th
PECOS - Prediction for Enormous and Correlated Spaces
PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i
Code for the paper "On the Power of Edge Independent Graph Models"
Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So
Generalized Data Weighting via Class-level Gradient Manipulation
Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach
Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo
Generalized and Efficient Blackbox Optimization System.
OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio
Revealing and Protecting Labels in Distributed Training
Revealing and Protecting Labels in Distributed Training
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.
FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”
Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions
gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis
Evaluating deep transfer learning for whole-brain cognitive decoding
Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.
Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T
This is the repository for Learning to Generate Piano Music With Sustain Pedals
SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec
Corruption Invariant Learning for Re-identification
Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed
A treasure chest for visual recognition powered by PaddlePaddle
简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发
Implicit Model Specialization through DAG-based Decentralized Federated Learning
Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)
Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.
Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.
Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021
PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.
Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities
Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the
Migration of Edge-based Distributed Federated Learning
FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.
META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.
Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.
Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us
Matplotlib Image labeller for classifying images
mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.
private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why
This is an auto-ML tool specialized in detecting of outliers
Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.
Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"
Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"
SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in
The Simpsons and Machine Learning: What makes an Episode Great?
The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit
A collection of easy-to-use, ready-to-use, interesting deep neural network models
Interesting and reproducible research works should be conserved. This repository wraps a collection of deep neural network models into a simple and un
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow
PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:
PyTorch implementation of UPFlow (unsupervised optical flow learning)
UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii
The official code repository for NeurIPS 2021 paper "Unsupervised Foreground Extraction via Deep Region Competition".
Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".
PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap
A large-scale database for graph representation learning
A large-scale database for graph representation learning
Machine Learning with JAX Tutorials
The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I found useful while learning JAX.
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi
MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query
fMRIprep Pipeline To Machine Learning
fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr
This repo represents all we learned and are learning in Data Structure course.
DataStructure Journey This repo represents all we learned and are learning in Data Structure course which is based on CLRS book and is being taught by
Decision Border Visualizer for Classification Algorithms
dbv Decision Border Visualizer for Classification Algorithms Project description A python package for Machine Learning Engineers who want to visualize
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)
Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi
MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu
Unsupervised Foreground Extraction via Deep Region Competition
Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset
The command line interface for Gradient - Gradient is an an end-to-end MLOps platform
Gradient CLI Get started: Create Account • Install CLI • Tutorials • Docs Resources: Website • Blog • Support • Contact Sales Gradient is an an end-to
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks
OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv
Python scripts using the Mediapipe models for Halloween.
Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).
Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested
Custom Implementation of Non-Deep Networks
ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https
A project that uses optical flow and machine learning to detect aimhacking in video clips.
waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".
Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment
CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)
VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
A complete end-to-end machine learning portal that covers processes starting from model training to the model predicting results using FastAPI.
Machine Learning Portal Goal Application Workflow Process Design Live Project Goal A complete end-to-end machine learning portal that covers processes
Ralph is a command-line tool to fetch, extract, convert and push your tracking logs from various storage backends to your LRS or any other compatible storage or database backend.
Ralph is a command-line tool to fetch, extract, convert and push your tracking logs (aka learning events) from various storage backends to your
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)
TAug :: Time Series Data Augmentation using Deep Generative Models
TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea
Molecular Sets (MOSES): A benchmarking platform for molecular generation models
Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".
Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear
Image inpainting using Gaussian Mixture Models
dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density
Anderson Acceleration for Deep Learning
Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.
Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali
Code for "Learning Graph Cellular Automata"
Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro
Open source single image super-resolution toolbox containing various functionality for training a diverse number of state-of-the-art super-resolution models. Also acts as the companion code for the IEEE signal processing letters paper titled 'Improving Super-Resolution Performance using Meta-Attention Layers’.
Deep-FIR Codebase - Super Resolution Meta Attention Networks About This repository contains the main coding framework accompanying our work on meta-at
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.
Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl
State-of-the-art language models can match human performance on many tasks
Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)
Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N
Node Dependent Local Smoothing for Scalable Graph Learning
Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04
A collection of Google research projects related to Federated Learning and Federated Analytics.
Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".
L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization.
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'
Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.
Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",
Easily Process a Batch of Cox Models
ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond
CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized