2641 Repositories
Python graph-convolutional-neural-networks Libraries
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".
GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.
1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)
machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers
Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations
NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes
Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses
Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner
Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges
GAN-based Matrix Factorization for Recommender Systems
GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing
This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".
Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y
Geometric Interpretation of Matrix Square Root and Inverse Square Root
Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt
On the adaptation of recurrent neural networks for system identification
On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape
Leaf: Multiple-Choice Question Generation
Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification
This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks
AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text
OntoProtein: Protein Pretraining With Ontology Embedding
OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]
Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https
Low Complexity Channel estimation with Neural Network Solutions
Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con
Official repository for the paper "On Evaluation Metrics for Graph Generative Models"
On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.
GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit
Author Disambiguation using Knowledge Graph Embeddings with Literals
Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe
Code for Multimodal Neural SLAM for Interactive Instruction Following
Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p
Do Neural Networks for Segmentation Understand Insideness?
This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),
Explanatory Learning: Beyond Empiricism in Neural Networks
Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)
Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n
Post-training Quantization for Neural Networks with Provable Guarantees
Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ([email protected]), Yixuan Zhou ([email protected]) and Ray
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻♂️
This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.
What can linearized neural networks actually say about generalization?
What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"
GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language
This is a work in progress reimplementation of Instant Neural Graphics Primitives
Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta
Neural Tangent Generalization Attacks (NTGA)
Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview
Noether Networks: meta-learning useful conserved quantities
Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)
STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation
CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT
A hybrid framework (neural mass model + ML) for SC-to-FC prediction
The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass model.
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning
Neural Network Just a basic Neural Network module Usage Example Importing Module
Graph Analysis From Scratch
Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb
Roamtologseq - A script loads a json export of a Roam graph and cleans it up for import into Logseq
Roam to Logseq The script loads a json export of a Roam graph and cleans it up f
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs
CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms
A library for benchmarking, developing and deploying deep learning anomaly detection algorithms Key Features • Getting Started • Docs • License Introd
Awesome Transformers in Medical Imaging
This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation
SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by
List of awesome things around semantic segmentation 🎉
Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks
Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images
Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments
Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network
This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks
This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.
self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks
NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th
CN24 is a complete semantic segmentation framework using fully convolutional networks
Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio
Segment axon and myelin from microscopy data using deep learning
Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as either axon, myelin or background.
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency
[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"
Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat
A deep neural networks for images using CNN algorithm.
Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h
On Evaluation Metrics for Graph Generative Models
On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic
To prepare an image processing model to classify the type of disaster based on the image dataset
Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.
News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore
[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course is Prof. Lu Shijian.
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors
GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E
NuPIC Studio is an all-in-one tool that allows users create a HTM neural network from scratch
NuPIC Studio is an all-in-one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visualization tool but an HTM builder, debugger and laboratory for experiments. It is ideal for newbies with little intimacy with NuPIC code as well as experts that wish a better productivity. Among its features and advantages:
An curated collection of awesome resources about networking in cybersecurity
An ongoing curated collection of awesome software, libraries, frameworks, talks & videos, best practices, learning tutorials and important practical resources about networking in cybersecurity
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation
VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.
Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the computational graph.
nn_builder lets you build neural networks with less boilerplate code
nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat
Google AI Open Images - Object Detection Track: Open Solution
Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c
Airbus Ship Detection Challenge
Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t
Fast Differentiable Matrix Sqrt Root
Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root
This Deep Learning Model Predicts that from which disease you are suffering.
Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int
Neural Machine Translation (NMT) tutorial with OpenNMT-py
Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form
GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.
Grover is a model for Neural Fake News -- both generation and detectio
Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.
ECLARE: Extreme Classification with Label Graph Correlations
ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification
GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"
Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul
Efficient Online Bayesian Inference for Neural Bandits
Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks
Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res