926 Repositories
Python memory-efficient-attention Libraries
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution
SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to
Normal Learning in Videos with Attention Prototype Network
Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)
DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification
Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr
MegFlow - Efficient ML solutions for long-tailed demands.
Efficient ML solutions for long-tailed demands.
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation
MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).
Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo
Code for "Searching for Efficient Multi-Stage Vision Transformers"
Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr
An efficient framework for reinforcement learning.
rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1
Framework for creating efficient data processing pipelines
Aqueduct Framework for creating efficient data processing pipelines. Contact Feel free to ask questions in telegram t.me/avito-ml Key Features Increas
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow
Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition
CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"
CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"
SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."
Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition
AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ
Intent parsing and slot filling in PyTorch with seq2seq + attention
PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars
A PyTorch implementation of the Transformer model in "Attention is All You Need".
Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference
PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based
A memory-efficient implementation of DenseNets
efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses
Simple and efficient RevNet-Library with DeepSpeed support
RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory
Implementation of Fast Transformer in Pytorch
Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).
Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"
Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021
Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving
NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration
State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks
MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V
Tool for generating Memory.scan() compatible instruction search patterns
scanpat Tool for generating Frida Memory.scan() compatible instruction search patterns. Powered by r2. Examples $ ./scanpat.py arm.ks:64 'sub sp, sp,
Context Axial Reverse Attention Network for Small Medical Objects Segmentation
CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and other financial information. This repository provides an SDK for developing applications to access the NCDS.
Nasdaq Cloud Data Service (NCDS) Nasdaq Cloud Data Service (NCDS) provides a modern and efficient method of delivery for realtime exchange data and ot
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION
Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling
⚠️ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"
Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning
VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.
Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.
AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention
Scenic: A Jax Library for Computer Vision and Beyond
Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c
Run Effective Large Batch Contrastive Learning on Limited Memory GPU
Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"
ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i
Active and Sample-Efficient Model Evaluation
Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch
Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab
Kunyu, more efficient corporate asset collection
Kunyu(坤舆) - More efficient corporate asset collection English | 中文文档 0x00 Introduce Tool introduction Kunyu (kunyu), whose name is taken from , is act
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.
CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin
Continuum Learning with GEM: Gradient Episodic Memory
Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.
Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The
pytorch implementation of Attention is all you need
A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)
Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"
Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red
A Structured Self-attentive Sentence Embedding
Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR
Bilinear attention networks for visual question answering
Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit
A PyTorch Implementation of the Luna: Linear Unified Nested Attention
Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning
H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)
Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"
Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.
Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin
Learned Token Pruning for Transformers
LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms
LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch
Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction
This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.
relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (
Pytorch implementation of face attention network
Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).
Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).
SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).
GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).
SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).
APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).
MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).
CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment
Parallelformers: An Efficient Model Parallelization Toolkit for Deployment
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).
ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module
Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)
DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"
HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the
EsViT: Efficient self-supervised Vision Transformers
Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper