1323 Repositories
Python model-interpretation Libraries
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
Evaluate on three different ML model for feature selection using Breast cancer data.
Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.
Breast cancer is been classified into benign tumour and malignant tumour.
Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.
Breast Cancer Classification Model is applied on a different dataset
Breast Cancer Classification Model is applied on a different dataset
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.
VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built
Bert4rec for news Recommendation
News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection
Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru
This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.
Implementation of the SUMO (Slim U-Net trained on MODA) model
SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava
Training a deep learning model on the noisy CIFAR dataset
Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai
A machine learning model for Covid case prediction
CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an
The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
bct_file_generator_for_EasyGSH The aim is to extract timeseries water level 2D information for any designed boundaries within the EasyGSH model domain
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.
This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.
Used for data processing in machine learning, and help us to construct ML model more easily from scratch
Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.
CLNTM - Contrastive Learning for Neural Topic Model
Contrastive Learning for Neural Topic Model This repository contains the impleme
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid symptoms or not by simply inputting certain values like oxygen level , breath rate , age, Vaccination done or not etc. with the help of kaggle database.
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables
Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.
Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o
LSTM model - IMDB review sentiment analysis
NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on
This is a working model for which I have used python.
Jarvis_voiceAssistance This is a working model for which I have used python. This model can: 1)Play a video or song on youtube. 2)Tell us time. 3)Tell
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.
Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.
MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid
RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and rearranging captions and pictures. Unlike other versions of the model we use BERT for text encoder and SWIN transformer for image encoder.
ruCLIP-SB RuCLIP-SB (Russian Contrastive Language–Image Pretraining SWIN-BERT) is a multimodal model for obtaining images and text similarities and re
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"
FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking
SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S
Hand gesture recognition model that can be used as a remote control for a smart tv.
Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon
Heart Arrhythmia Classification
This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for classification purposes.
RobustVideoMatting and background composing in one model by using onnxruntime.
RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam
A model to classify a piece of news as REAL or FAKE
Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.
MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI
This repository contains the raw data and a python notebook to ingest historical A&E attendance data and then use a simple Prophet model to predict the number of A&E attendances in England if the COVID-19 pandemic had not happened
ae_attendances_modelling This repository contains the raw data and a python notebook to ingest historical A&E attendance data and then use a simple Pr
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2
GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.
Annotate datasets with a semi-trained or fully trained YOLOv5 model
YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie
High-fidelity 3D Model Compression based on Key Spheres
High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness
HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model
Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure
Geometric Interpretation of Matrix Square Root and Inverse Square Root
Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On
UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.
CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1
Combinatorial model of ligand-receptor binding
Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell
Official code of Team Yao at Multi-Modal-Fact-Verification-2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo
Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W
Model Agnostic Interpretability for Multiple Instance Learning
MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.
shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t
A classification model capable of accurately predicting the price of secondhand cars
The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this repository. Most packages used are usually pre-installed in most developed environments and tools like collab, jupyter, etc. This can be useful for people looking to enhance the way the code their predicitve models and efficient ways to deal with tabular data!
Style transfer between images was performed using the VGG19 model
Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below
This library provides an abstraction to perform Model Versioning using Weight & Biases.
Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod
A cut down version of QUANT containing just the model in Python (QUANTPy)
A cut down version of QUANT containing just the model in Python (QUANTPy)
SAS: Self-Augmentation Strategy for Language Model Pre-training
SAS: Self-Augmentation Strategy for Language Model Pre-training This repository
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"
GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation
EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The
A hybrid framework (neural mass model + ML) for SC-to-FC prediction
The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass model.
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2
RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi
This porject is intented to build the most accurate model for predicting the porbability of loan default
Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting
Toward Model Interpretability in Medical NLP
Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ([email protected]) and Daniel Kim
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation
FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model
Static Features Classifier This is a static features classifier for Point-Could
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for customers.
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"
Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat
To prepare an image processing model to classify the type of disaster based on the image dataset
Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ
OMNIVORE is a single vision model for many different visual modalities
Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns
Cereal box identification in store shelves using computer vision and a single train image per model.
Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu
Django Pickled Model
Django Pickled Model Django pickled model provides you a model with dynamic data types. a field can store any value in any type. You can store Integer
Open solution to the Toxic Comment Classification Challenge
Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee
Event-driven-model-serving - Unified API of Apache Kafka and Google PubSub
event-driven-model-serving Unified API of Apache Kafka and Google PubSub 1. Proj
This Deep Learning Model Predicts that from which disease you are suffering.
Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int
Blackstone is a spaCy model and library for processing long-form, unstructured legal text
Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f
Grover is a model for Neural Fake News -- both generation and detectio
Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.
Original Implementation of Prompt Tuning from Lester, et al, 2021
Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"
NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.
A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)
A novel dual model approach for categorization of unbalanced skin lesion image classes (Presented technical paper 📃)
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset
A handy tool for common machine learning models' hyper-parameter tuning.
Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains
PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r
Caffe-like explicit model constructor. C(onfig)Model
cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn
A CNN model to detect hand gestures.
Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.
Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment
Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction
IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines
Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy
Predicting 10 different clothing types using Xception pre-trained model.
Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from
Scripts used to make and evaluate OpenAlex's concept tagging model
openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.
Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.
BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios
Deep learning transformer model that generates unique music sequences.
music-ai Deep learning transformer model that generates unique music sequences. Abstract In 2017, a new state-of-the-art was published for natural lan