2585 Repositories
Python opencv-detection-models Libraries
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"
Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator
involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a
Beyond the Imitation Game collaborative benchmark for enormous language models
BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t
Object Depth via Motion and Detection Dataset
ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea
Django project starter on steroids: quickly create a Django app AND generate source code for data models + REST/GraphQL APIs (the generated code is auto-linted and has 100% test coverage).
Create Django App 💛 We're a Django project starter on steroids! One-line command to create a Django app with all the dependencies auto-installed AND
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021
Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper
Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc
Open Source Computer Vision Library
OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m
A library for hidden semi-Markov models with explicit durations
hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Visualizer for neural network, deep learning, and machine learning models
Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens
Interpretability and explainability of data and machine learning models
AI Explainability 360 (v0.2.1) The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datase
FairML - is a python toolbox auditing the machine learning models for bias.
======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive
Algorithms for monitoring and explaining machine learning models
Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-qual
Gluon CV Toolkit
Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥
TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens
Datasets, Transforms and Models specific to Computer Vision
torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat
Anomaly Detection and Correlation library
luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)
Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext
[HELP REQUESTED] Generalized Additive Models in Python
pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models
Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster
[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".
Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th
Pneumonia Detection using machine learning - with PyTorch
Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase
Object detection on multiple datasets with an automatically learned unified label space.
Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E
OpenChat: Opensource chatting framework for generative models
OpenChat is opensource chatting framework for generative models.
Localization Distillation for Object Detection
Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation
A Python library that helps data scientists to infer causation rather than observing correlation.
A Python library that helps data scientists to infer causation rather than observing correlation.
A wiki system with complex functionality for simple integration and a superb interface. Store your knowledge with style: Use django models.
django-wiki Django support The below table explains which Django versions are supported. Release Django Upgrade from 0.7.x 2.2, 3.0, 3.1 0.5 or 0.6 0.
🦉Data Version Control | Git for Data & Models
Website • Docs • Blog • Twitter • Chat (Community & Support) • Tutorial • Mailing List Data Version Control or DVC is an open-source tool for data sci
Social Distancing Detector using deep learning and capable to run on edge AI devices such as NVIDIA Jetson, Google Coral, and more.
Smart Social Distancing Smart Social Distancing Introduction Getting Started Prerequisites Usage Processor Optional Parameters Configuring AWS credent
Admin Panel for GinoORM - ready to up & run (just add your models)
Gino-Admin Docs (state: in process): Gino-Admin docs Play with Demo (current master 0.2.3) Gino-Admin demo (login: admin, pass: 1234) Admin
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
changedetection.io - The best and simplest self-hosted website change detection monitoring service
changedetection.io - The best and simplest self-hosted website change detection monitoring service. An alternative to Visualping, Watchtower etc. Designed for simplicity - the main goal is to simply monitor which websites had a text change. Open source web page change detection.
Release for Improved Denoising Diffusion Probabilistic Models
improved-diffusion This is the codebase for Improved Denoising Diffusion Probabilistic Models. Usage This section of the README walks through how to t
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来
This is a new web-based photo management application. Run it on your home server and it will let you find the right photo from your collection on any device. Smart filtering is made possible by object recognition, location awareness, color analysis and other ML algorithms.
Photonix Photo Manager This is a photo management application based on web technologies. Run it on your home server and it will let you find what you
Deepfake Scanner by Deepware.
Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity
SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.
Reviving Iterative Training with Mask Guidance for Interactive Segmentation
This repository provides the source code for training and testing state-of-the-art click-based interactive segmentation models with the official PyTorch implementation
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.
CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.
ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.
Pre-trained NFNets with 99% of the accuracy of the official paper
NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection
Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
A general 3D Object Detection codebase in PyTorch.
Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art methods on major benchmarks like KITTI(ViP) and nuScenes(CBGS).
Facilitating the design, comparison and sharing of deep text matching models.
MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
Super easy library for BERT based NLP models
Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.
pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti
A full spaCy pipeline and models for scientific/biomedical documents.
This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
State of the Art Natural Language Processing
Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Inner ear models for Python
cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au
NO LONGER MAINTAINED - A Flask extension for creating simple ReSTful JSON APIs from SQLAlchemy models.
NO LONGER MAINTAINED This repository is no longer maintained due to lack of time. You might check out the fork https://github.com/mrevutskyi/flask-res
TransGAN: Two Transformers Can Make One Strong GAN
[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).
A dynamic FastAPI router that automatically creates CRUD routes for your models
⚡ Create CRUD routes with lighting speed ⚡ A dynamic FastAPI router that automatically creates CRUD routes for your models Documentation: https://fast
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.
ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin
a spacial-temporal pattern detection system for home automation
Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan
HTTP Request Smuggling Detection Tool
HTTP Request Smuggling Detection Tool HTTP request smuggling is a high severity vulnerability which is a technique where an attacker smuggles an ambig
A vision library for performing sliced inference on large images/small objects
SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta
Simple SDF mesh generation in Python
Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.
A standard framework for modelling Deep Learning Models for tabular data
PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.
CPU inference engine that delivers unprecedented performance for sparse models
The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].
Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper
Facilitating the design, comparison and sharing of deep text matching models.
MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News
🏖 Easy training and deployment of seq2seq models.
Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.
(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u
Super easy library for BERT based NLP models
Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.
pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti
A full spaCy pipeline and models for scientific/biomedical documents.
This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.
ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...
Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran
State of the Art Natural Language Processing
Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide
An open source library for deep learning end-to-end dialog systems and chatbots.
DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
The open-source tool for building high-quality datasets and computer vision models
The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.
Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on
Turi Create simplifies the development of custom machine learning models.
Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie