1328 Repositories
Python regression-models Libraries
Additional code for Stable-baselines3 to load and upload models from the Hub.
Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t
This repo includes some graph-based CTR prediction models and other representative baselines.
Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)
GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constraints to achieve maximum laps in a race with a 2-hour time window.
Keras code and weights files for popular deep learning models.
Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi
Python Machine Learning Jupyter Notebooks (ML website)
Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.
NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi
DCM is a set of tools that helps you to keep your data in your Django Models consistent.
Django Consistency Model DCM is a set of tools that helps you to keep your data in your Django Models consistent. Motivation You have a lot of legacy
A Transformer Implementation that is easy to understand and customizable.
Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem
Interpolation-based reduced-order models
Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum
Reference models and tools for Cloud TPUs.
Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.
optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S
for a paper about leveraging discourse markers for training new models
TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis
HuSpaCy: industrial-strength Hungarian natural language processing
HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti
Repository for the AugmentedPCA Python package.
Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models
tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener
A framework for multi-step probabilistic time-series/demand forecasting models
JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains
Exploration of BERT-based models on twitter sentiment classifications
twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER
PyTorch implementation(s) of various ResNet models from Twitch streams.
pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)
Machine learning and Deep learning models, deploy on telegram (the best social media)
Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse
Script and models for clustering LAION-400m CLIP embeddings.
clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje
An executor that wraps 3D mesh models and encodes 3D content documents to d-dimension vector.
3D Mesh Encoder An Executor that receives Documents containing point sets data in its blob attribute, with shape (N, 3) and encodes it to embeddings o
Natural Language Processing Best Practices & Examples
NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .
DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.
Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 Tensorflow 2.0
NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab
🙄 Difficult algorithm, Simple code.
🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin
Implementation of deep learning models for time series in PyTorch.
List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour
Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to
Survival analysis in Python
What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. Cherche's main strength is its ability to build diverse and end-to-end pipelines.
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.
deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models
General Assembly's 2015 Data Science course in Washington, DC
DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (
🔅 Shapash makes Machine Learning models transparent and understandable by everyone
🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y
List of papers, code and experiments using deep learning for time series forecasting
Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.
Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo
Largest list of models for Core ML (for iOS 11+)
Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v
Simulate genealogical trees and genomic sequence data using population genetic models
msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis
A Python Package For System Identification Using NARMAX Models
SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. Advbox give a command line tool to generate adversarial examples with Zero-Coding.
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
StarGAN - Official PyTorch Implementation (CVPR 2018)
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"
CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Reinforcement learning algorithms in RLlib
raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them
TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S
Repository for Project Insight: NLP as a Service
Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H
Crowd sourced training data for Rasa NLU models
NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free
An easy-to-use app to visualise attentions of various VQA models.
Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click
An image classification app boilerplate to serve your deep learning models asap!
Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.
📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene
Machine learning library for fast and efficient Gaussian mixture models
This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".
Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.
CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice
Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi
Using BERT-based models for toxic span detection
SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2
N-gram models- Unsmoothed, Laplace, Deleted Interpolation
N-gram models- Unsmoothed, Laplace, Deleted Interpolation
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)
StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation
InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of
Masked regression code - Masked Regression
Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'
PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept
Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.
LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.
Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S
TrainingBike - Code, models and schematics I've used to interface my stationary training bike with PC.
TrainingBike Code, models and schematics I've used to interface my stationary training bike with PC. You can find more information about the project i
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
LinearRegression2 Tvads and CarSales
LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.
Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for
Image-popularity-score - A novel deep regression method for image scoring.
Image-popularity-score - A novel deep regression method for image scoring.
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients
Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan
Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)
Minimal code and simple experiments to play with Denoising Diffusion Probabilist
A minimal implementation of Gaussian process regression in PyTorch
pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b
SOTA easy to use PyTorch-based DL training library
Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019
USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.
Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.
Beibo is a Python library that uses several AI prediction models to predict stocks returns over a defined period of time.
Contrastive Learning of Structured World Models
Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo
A Python Package for Convex Regression and Frontier Estimation
pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least complexity possible
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513
MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de
Quantized models with python
quantized-network download .pth files to qmodels/: googlenet : https://download.
A modular dynamical-systems model of Ethereum's validator economics.
CADLabs Ethereum Economic Model A modular dynamical-systems model of Ethereum's validator economics, based on the open-source Python library radCAD, a
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.
Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.
Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.
Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a
LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic models without much code.
LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic models without much code. LazyText is for text what lazypredict is for numeric data.
Data Model built using Logistic Regression Algorithm on Python.
Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo
Tools to convert SQLAlchemy models to Pydantic models
Pydantic-SQLAlchemy Tools to generate Pydantic models from SQLAlchemy models. Still experimental. How to use Quick example: from typing import List f