970 Repositories
Python unsupervised-classification Libraries
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
Algorithms for outlier, adversarial and drift detection
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
An intuitive library to extract features from time series
Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra
An LSTM for time-series classification
Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In
Medical appointments No-Show classifier
Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.
List of papers, code and experiments using deep learning for time series forecasting
Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f
A Practitioner's Guide to Natural Language Processing
Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text Analytics with Python published by Apress/Springer.
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)
U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.
Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo
Anomaly detection related books, papers, videos, and toolboxes
Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify
A list of NLP(Natural Language Processing) tutorials
NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and
Official repository for "Orthogonal Projection Loss" (ICCV'21)
Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl
This project hosts the code for implementing the ISAL algorithm for object detection and image classification
Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi
python 93% acc. CNN Dogs Vs Cats ( Pytorch )
English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]
Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.
Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.
This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi
Code for paper "Multi-level Disentanglement Graph Neural Network"
Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:
CIFAR-10 Photo Classification
Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand
An image classification app boilerplate to serve your deep learning models asap!
Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho
👑 spaCy building blocks and visualizers for Streamlit apps
spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.
Histology images query (unsupervised)
110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query
Machine learning library for fast and efficient Gaussian mixture models
This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.
The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C
Rethinking the Truly Unsupervised Image-to-Image Translation - Official PyTorch Implementation (ICCV 2021)
Rethinking the Truly Unsupervised Image-to-Image Translation (ICCV 2021) Each image is generated with the source image in the left and the average sty
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning
MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network
We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation
ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation
Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle
DualGAN-tensorflow: tensorflow implementation of DualGAN
ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re
Unsupervised captioning - Code for Unsupervised Image Captioning
Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se
Fashion Entity Classification
Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess
Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.
LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
AutoGluon: AutoML for Text, Image, and Tabular Data
AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.
a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta
Automatic library of congress classification, using word embeddings from book titles and synopses.
Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion
VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech
ADCS - Automatic Defect Classification System (ADCS) for SSMC
Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible
IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."
PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning
[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification
TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla
Ladder network is a deep learning algorithm that combines supervised and unsupervised learning
This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Hon
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification
MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)
Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for
Meta Learning for Semi-Supervised Few-Shot Classification
few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)
Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.
CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning
Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut
Unsupervised Representation Learning by Invariance Propagation
Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"
Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]
Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.
Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,
Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast
Code and training data for our ECCV 2016 paper on Unsupervised Learning
Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.
Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)
RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:
An unsupervised learning framework for depth and ego-motion estimation from monocular videos
SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew
Code for "Unsupervised State Representation Learning in Atari"
Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"
[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas
nlpcommon is a python Open Source Toolkit for text classification.
nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)
(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc
LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic models without much code.
LazyText is inspired b the idea of lazypredict, a library which helps build a lot of basic models without much code. LazyText is for text what lazypredict is for numeric data.
Rule based classification A hotel s customers dataset
Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re
MvtecAD unsupervised Anomaly Detection
MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction
AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"
Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes
Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can
Sentiment Analysis web app using Streamlit - American Airlines Tweets
Analyse des sentiments à partir des Tweets L'application est développée par Streamlit L'analyse sentimentale est effectuée sur l'ensemble de données d
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"
deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.
ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir
Neural network for digit classification powered by cuda
cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist
Classification of ecg datas for disease detection
ecg_classification Classification of ecg datas for disease detection
Malware-Related Sentence Classification
Malware-Related Sentence Classification This repo contains the code for the ICTAI 2021 paper "Enrichment of Features for Malware-Related Sentence Clas