763 Repositories
Python Point-Transformers Libraries
Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.
Python library to manipulate Ingenico mobile payment device like iCT220 or iWL220 equipped with Telium Manager. RS232/USB.
SeMask: Semantically Masked Transformers for Semantic Segmentation.
SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]
transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent
Self-Adaptable Point Processes with Nonparametric Time Decays
NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P
High-performance moving least squares material point method (MLS-MPM) solver.
High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti
Help you understand Manual and w/ Clutch point while driving.
简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).
BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)
DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De
A quick recipe to learn all about Transformers
Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.
Yuno is context based search engine for anime.
Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin
Robotics with GPU computing
Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"
ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,
Neural Point-Based Graphics
Neural Point-Based Graphics Project Video Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3
Label data using HuggingFace's transformers and automatically get a prediction service
Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu
Model parallel transformers in JAX and Haiku
Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo
Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz
DeLighT: Very Deep and Light-Weight Transformers
DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.
Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"
Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
Awesome Treasure of Transformers Models Collection
💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️
Text Classification in Turkish Texts with Bert
You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification
Powerful unsupervised domain adaptation method for dense retrieval.
Powerful unsupervised domain adaptation method for dense retrieval
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding
Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh
points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.
PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super
Pangu-Alpha for Transformers
Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)
Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since
2D Human Pose estimation using transformers. Implementation in Pytorch
PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe
Experiments and examples converting Transformers to ONNX
Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences
Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point
State-of-the-art NLP through transformer models in a modular design and consistent APIs.
Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"
Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena
Hashformers is a framework for hashtag segmentation with transformers.
Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"
Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences
Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems
Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement
Post-Training Quantization for Vision transformers.
PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.
TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch
N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage
Train and use generative text models in a few lines of code.
blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"
UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch
NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)
Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis
Score-Based Point Cloud Denoising (ICCV'21)
Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in
Mastering Transformers, published by Packt
Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)
This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"
To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"
Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".
LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"
UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun
A simple algorithm for extracting tree height in sparse scene from point cloud data.
TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in
Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness
XDR Tuner Adjust the white point, gamma or make your XDR display darker without losing HDR peak luminance or the ability to adjust display brightness
Code for Editing Factual Knowledge in Language Models
KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed
OOD Generalization and Detection (ACL 2020)
Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Understanding the Difficulty of Training Transformers
Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful
Optimizing Deeper Transformers on Small Datasets
DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)
Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios
Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple
Fast and robust clustering of point clouds generated with a Velodyne sensor.
Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021
Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns
Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021
ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans
This is the face keypoint train code of project face-detection-project
face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_
End-to-End Referring Video Object Segmentation with Multimodal Transformers
End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling
Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho
PyTorch implementation of Pointnet2/Pointnet++
Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".
Official Pytorch Code for the paper TransWeather
TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)
PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN
Haystack is an open source NLP framework that leverages Transformer models.
Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)
KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions
Conversational text Analysis using various NLP techniques
PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb
Kernel Point Convolutions
Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.
PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.
MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE
Make differentially private training of transformers easy for everyone
private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.
OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.
ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in
Spatial Sparse Convolution Library
SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p