382 Repositories
Python book-series Libraries
A repository of study materials related to Think Python 2nd Edition by Allen B. Downey. More information about the book can be found here: https://greenteapress.com/wp/think-python-2e/
Intro-To-Python This content is based on the book Think Python 2nd Edition by Allen B. Downey. More information about the book can be found here: http
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.
Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem
Code Repository for The Kaggle Book, Published by Packt Publishing
The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu
Lightning ⚡️ fast forecasting with statistical and econometric models.
Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.
Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code
All of the figures and notebooks for my deep learning book, for free!
"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series
A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing values.
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch
ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time
SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice
Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series
Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea
Course files for "Ocean/Atmosphere Time Series Analysis"
time-series This package contains all necessary files for the course Ocean/Atmosphere Time Series Analysis, an introduction to data and time series an
ML powered analytics engine for outlier detection and root cause analysis.
Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C
The Deep Learning with Julia book, using Flux.jl.
Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy
Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape
Tutorial on Tempo, Beat and Downbeat estimation
Tempo, Beat and Downbeat Estimation By Matthew E. P. Davies, Sebastian Böck and Magdalena Fuentes Resources and Jupyter Book for the ISMIR 2021 tutori
Package towards building Explainable Forecasting and Nowcasting Models with State-of-the-art Deep Neural Networks and Dynamic Factor Model on Time Series data sets with single line of code. Also, provides utilify facility for time-series signal similarities matching, and removing noise from timeseries signals.
DeepXF: Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model Also, verify TS signal similarities
A cross-platform script to book first available time for getting a passport in Sweden - Ett skript som automatiskt bokar pass hos polisen
Automatic passport booker - Boka pass automatiskt hos Svenska polisen A cross-platform script to book first available time for getting a passport in S
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)
About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.
Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa
AddressBookApp - Address Book App in Django
AddressBookApp Application Name Address Book App in Django, 2022 Technologies La
A simple REST API to manage postal addresses, written in Python/Django.
A simple REST API to manage postal addresses, written in Python/Django.
Python Create Your Own Tool Series
Python Create Your Own Tool Series Hey there! This is an additional Github repository that contains the final product files for each video in my Youtu
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM, XGBoost, Ranger...).
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors In order to facilitate the res
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"
TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.
Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from label proportions (LLP) example or the example script.
NCAR/UCAR virtual Python Tutorial Seminar Series lesson on MetPy.
The Project Pythia Python Tutorial Seminar Series continues with a lesson on MetPy on Wednesday, 2 February 2022 at 1 PM Mountain Standard Time.
A tool to find good RCE From my series: A powerful Burp extension to make bounties rain
A tool to find good RCE From my series: A powerful Burp extension to make bounties rain
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
A python scripts that uses 3 different feature extraction methods such as SIFT, SURF and ORB to find a book in a video clip and project trailer of a movie based on that book, on to it.
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the
NeuralForecast is a Python library for time series forecasting with deep learning models
NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate model benchmarks and SOTA models implemented in PyTorch and PyTorchLightning.
Weather Image Recognition - Python weather application using series of data
Weather Image Recognition - Python weather application using series of data
Pytorch implementation of OCNet series and SegFix.
openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen
A series of basic programs written in Python
Primeros programas en Python Una serie de programas básicos escritos en Python
This repo contains the code required to train the multivariate time-series Transformer.
Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)
Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr
Heart Arrhythmia Classification
This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for classification purposes.
Reinforcement Learning Theory Book (rus)
Reinforcement Learning Theory Book (rus)
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness
HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting
Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.
SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura
Create animated and pretty Pandas Dataframe or Pandas Series
Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa
This is an API developed in python with the FastApi framework and putting into practice the recommendations of the book Clean Architecture in Python by Leonardo Giordani,
This is an API developed in python with the FastApi framework and putting into practice the recommendations of the book Clean Architecture in Python by Leonardo Giordani,
Feature engineering and machine learning: together at last
Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu
Python for Data Analysis, 2nd Edition
Python for Data Analysis, 2nd Edition Materials and IPython notebooks for "Python for Data Analysis" by Wes McKinney, published by O'Reilly Media Buy
Jupyter notebooks for the book "The Elements of Statistical Learning".
This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code
sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ
The code used for the free quants@dev Webinar series on Reinforcement Learning in Finance
Reinforcement Learning in Finance quats@dev Webinar This repository provides the code for the free quants@dev Webinar series about Reinforcement Learn
Deep Learning for Time Series Forecasting.
nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix
[SDM 2022] Towards Similarity-Aware Time-Series Classification
SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie
Deeplearning project at The Technological University of Denmark (DTU) about Neural ODEs for finding dynamics in ordinary differential equations and real world time series data
Authors Marcus Lenler Garsdal, [email protected] Valdemar Søgaard, [email protected] Simon Moe Sørensen, [email protected] Introduction This repo contains the
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame
Book Recommender System Using Sci-kit learn N-neighbours
Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library
Calendar heatmaps from Pandas time series data
Note: See MarvinT/calmap for the maintained version of the project. That is also the version that gets published to PyPI and it has received several f
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.
Official repository for the BPF Performance Tools book
BPF Performance Tools This is the official repository of BPF (eBPF) tools from the book BPF Performance Tools: Linux and Application Observability. Th
Companion code to my O'Reilly book "Flask Web Development", second edition.
Flasky This repository contains the source code examples for the second edition of my O'Reilly book Flask Web Development. The commits and tags in thi
This is code of book "Learn Deep Learning with PyTorch"
深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在
Practical Machine Learning with Python
Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.
🐞 Douban Movie / Douban Book Scarpy
Python3-based Douban Movie/Douban Book Scarpy crawler for cover downloading + data crawling + review entry.
A project to work with databases in 4 worksheets, insert, update, select, delete using Python and MySqI
A project to work with databases in 4 worksheets, insert, update, select, delete using Python and MySqI As a small project for school or college hope it is useful
[SDM 2022] Towards Similarity-Aware Time-Series Classification
SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"
dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi
A framework for multi-step probabilistic time-series/demand forecasting models
JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains
Sentinel-1 SAR time series analysis for OSINT use
SARveillance Sentinel-1 SAR time series analysis for OSINT use. Description Generates a time lapse GIF of the Sentinel-1 satellite images for the loca
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.
An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L
Jupyter notebook and datasets from the pandas Q&A video series
Python pandas Q&A video series Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas. Jupyter Note
Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)
The Deep Learning Book - Goodfellow, I., Bengio, Y., and Courville, A. (2016) This content is part of a series following the chapter 2 on linear algeb
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.
Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly
To attract customers, the hotel chain has added to its website the ability to book a room without prepayment
To attract customers, the hotel chain has added to its website the ability to book a room without prepayment. We need to predict whether the customer is going to reject the booking or not. Since in case of refusal, the hotel incurs losses.
PyTorch GPU implementation of the ES-RNN model for time series forecasting
Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data
LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav
Implementation of deep learning models for time series in PyTorch.
List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
Fully Convlutional Neural Networks for state-of-the-art time series classification
Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin
Practical Time-Series Analysis, published by Packt
Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj
Machine Learning for Time-Series with Python.Published by Packt
Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am
Deep Learning for Time Series Classification
Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re
U-Time: A Fully Convolutional Network for Time Series Segmentation
U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation
PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms
AnnotateChange Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)
taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la
Time series annotation library.
CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals
Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of
TICC is a python solver for efficiently segmenting and clustering a multivariate time series
TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz
A Multipurpose Library for Synthetic Time Series Generation in Python
TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library
Methods to get the probability of a changepoint in a time series.
Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t
DeltaPy - Tabular Data Augmentation (by @firmai)
DeltaPy — Tabular Data Augmentation & Feature Engineering Finance Quant Machine Learning ML-Quant.com - Automated Research Repository Introduction T
A Python package for time series augmentation
tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn
An example of time series augmentation methods with Keras
Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre
A Time Series Library for Apache Spark
Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
Library for time-series-forecasting-as-a-service.
TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi
Python implementation of the Learning Time-Series Shapelets method, that learns a shapelet-based time-series classifier with gradient descent.
shaplets Python implementation of the Learning Time-Series Shapelets method by Josif Grabocka et al., that learns a shapelet-based time-series classif
Whisper is a file-based time-series database format for Graphite.
Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and
Algorithms for outlier, adversarial and drift detection
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d
Automated Time Series Forecasting
AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod
catch-22: CAnonical Time-series CHaracteristics
catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma