297 Repositories
Python clustering-evaluation Libraries
Fast and robust clustering of point clouds generated with a Velodyne sensor.
Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).
Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering
PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning
Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua
GroundSeg Clustering Optimized Kdtree
ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms
MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is
Python Single Object Tracking Evaluation
pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT
Tightness-aware Evaluation Protocol for Scene Text Detection
TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.
FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua
Prevent `CUDA error: out of memory` in just 1 line of code.
🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".
Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches
Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting
Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.
BanditPAM: Almost Linear-Time k-Medoids Clustering
BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim
Sequence clustering and database creation using mmseqs, from local fasta files
Sequence clustering and database creation using mmseqs, from local fasta files
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.
Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods
ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).
Semi-Supervised Learning for Fine-Grained Classification
Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning
ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a
A Python package for causal inference using Synthetic Controls
Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim
ImageNet Adversarial Image Evaluation
ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa
Tutela: an Ethereum and Tornado Cash Anonymity Tool
Tutela: an Ethereum and Tornado Cash Anonymity Tool The repo contains open-source code for Tutela, an anonymity tool for Ethereum and Tornado Cash use
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.
Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.
An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu
A library for efficient similarity search and clustering of dense vectors.
Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any
Infomap is a network clustering algorithm based on the Map equation.
Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re
Unsupervised clustering of high content screen samples
Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa
K-Means clusternig example with Python and Scikit-learn
Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se
Accelerating model creation and evaluation.
EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"
THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE
A Python module for clustering creators of social media content into networks
sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks
Automatic Video Captioning Evaluation Metric --- EMScore
Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"
Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.
Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for
A high performance implementation of HDBSCAN clustering.
HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates
PyClustering is a Python, C++ data mining library.
pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each algorithm or model. C++ pyclustering library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.
FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.
Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa
Buckshot++ is a new algorithm that finds highly stable clusters efficiently.
Buckshot++: An Outlier-Resistant and Scalable Clustering Algorithm. (Inspired by the Buckshot Algorithm.) Here, we introduce a new algorithm, which we
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.
tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s
MiniSom is a minimalistic implementation of the Self Organizing Maps
MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N
Implements (high-dimenstional) clustering algorithm
Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)
Hyperbolic Hierarchical Clustering.
Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2
reXmeX is recommender system evaluation metric library.
A general purpose recommender metrics library for fair evaluation.
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop
Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri
XAI - An eXplainability toolbox for machine learning
XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai
The project covers common metrics for super-resolution performance evaluation.
Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”
Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset
PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation
Security evaluation module with onnx, pytorch, and SecML.
🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you
cLoops2: full stack analysis tool for chromatin interactions
cLoops2: full stack analysis tool for chromatin interactions Introduction cLoops2 is an extension of our previous work, cLoops. From loop-calling base
Web Crawlers for Data Labelling of Malicious Domain Detection & IP Reputation Evaluation
Web Crawlers for Data Labelling of Malicious Domain Detection & IP Reputation Evaluation This repository provides two web crawlers to label domain nam
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2
Suite of tools for retrieving USGS NWIS observations and evaluating National Water Model (NWM) data.
Documentation OWPHydroTools GitHub pages documentation Motivation We developed OWPHydroTools with data scientists in mind. We attempted to ensure the
Pipeline and Dataset helpers for complex algorithm evaluation.
tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"
Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from
Installation, test and evaluation of Scribosermo speech-to-text engine
Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua
A toolkit for geo ML data processing and model evaluation (fork of solaris)
An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation
deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io
Evaluation of TCP BBRv1 in wireless networks
The Network Simulator, Version 3 Table of Contents: An overview Building ns-3 Running ns-3 Getting access to the ns-3 documentation Working with the d
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation
A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype
Unified MultiWOZ evaluation scripts for the context-to-response task.
MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".
PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.
K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data
We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for produce an anomaly score. Then, we merge these two score and produce merged anomaly score as a result.
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.
AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!
Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.
MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"
Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E
ML From Scratch
ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision
Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance.
Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance. We have developed the system such that, it will automatically parse data onto the database from excel file, which will in return reduce time consumption of analysis of data.
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.
Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.
Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)
Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.
A collection of neat and practical data science and machine learning projects
Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.
Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline
CPC-big and k-means clustering for zero-resource speech processing
The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.
Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.
Evaluation of a Monocular Eye Tracking Set-Up
Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)
SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on
A fast implementation of bss_eval metrics for blind source separation
fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022
CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.
The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio
fast_bss_eval is a fast implementation of the bss_eval metrics for the evaluation of blind source separation.
fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search
Tribuo - A Java machine learning library
Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with
lazy_table - a python-tabulate wrapper for producing tables from generators
A python-tabulate wrapper for producing tables from generators. Motivation lazy_table is useful when (i) each row of your table is generated by a poss
Implementation of linear CorEx and temporal CorEx.
Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).
Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.
Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It
Demonstration that AWS IAM policy evaluation docs are incorrect
The flowchart from the AWS IAM policy evaluation documentation page, as of 2021-09-12, and dating back to at least 2018-12-27, is the following: The f