1778 Repositories
Python hierarchical-attention-networks Libraries
Machine Learning Study 혼자 해보기
Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil
Code for the Lovász-Softmax loss (CVPR 2018)
The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. Advbox give a command line tool to generate adversarial examples with Zero-Coding.
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]
Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome
bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more
Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet
One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix
This repository contains small projects related to Neural Networks and Deep Learning in general.
ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.
#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset
AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch
U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.
Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal
Code for paper "Multi-level Disentanglement Graph Neural Network"
Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:
CIFAR-10 Photo Classification
Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand
An image classification app boilerplate to serve your deep learning models asap!
Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho
Music Generation using Neural Networks Streamlit App
Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.
Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).
DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho
PyTorch implementation of DCT fast weight RNNs
DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.
CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep
TSIT: A Simple and Versatile Framework for Image-to-Image Translation
TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
DAGAN - Dual Attention GANs for Semantic Image Synthesis
Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation
GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation
CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag
Official PyTorch implementation of GDWCT (CVPR 2019, oral)
This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
A unified framework to jointly model images, text, and human attention traces.
connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]
Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time
Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi
Fashion Entity Classification
Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders
Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks
DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ
Convnet transfer - Code for paper How transferable are features in deep neural networks?
How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model
Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State
Tensorflow implementation of soft-attention mechanism for video caption generation.
SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"
Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images
Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================
Image captioning - Tensorflow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Introduction This neural system for image captioning is roughly based on the paper "Show, Attend and Tell: Neural Image Caption Generation with Visual
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks
Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes
Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation
Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods
SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (
A video scene detection algorithm is designed to detect a variety of different scenes within a video
Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logically and chronologically related shots taken in a specific order to depict an over-arching concept or story.
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)
AlexaUsingPython - Alexa will pay attention to your order, as: Hello Alexa, play music, Hello Alexa
AlexaUsingPython - Alexa will pay attention to your order, as: Hello Alexa, play music, Hello Alexa, what's the time? Alexa will pay attention to your order, get it, and afterward do some activity as indicated by your order.
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.
Osmnx-examples - Usage examples, demos, and tutorials for OSMnx.
OSMnx Examples OSMnx is a Python package to work with street networks and other spatial data from OpenStreetMap: retrieve, model, analyze, and visuali
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.
A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai
Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net
PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)
Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models
Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow
TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).
Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.
Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need
[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.
Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi
Public repository containing materials used for Feed Forward (FF) Neural Networks article.
Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function
BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021
CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/
Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
Siamese Deep Neural Networks for Semantic Text Similarity PyTorch A repository c
Self Governing Neural Networks (SGNN): the Projection Layer
Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!
Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation
Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"
MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)
SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.
DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pretraining on Dynamic Graph Neural Networks
Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)
Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning
Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame
☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".
Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"
SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper
Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.
Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"
SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"
GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.
Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa
Deeper insights into graph convolutional networks for semi-supervised learning
deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem