689 Repositories
Python large-scale-optimization Libraries
Global Tracking Transformers, CVPR 2022
Global Tracking Transformers Global Tracking Transformers, Xingyi Zhou, Tianwei Yin, Vladlen Koltun, Philipp Krähenbühl, CVPR 2022 (arXiv 2203.13250)
JF⚡can - Super fast port scanning & service discovery using Masscan and Nmap. Scan large networks with Masscan and use Nmap's scripting abilities to discover information about services. Generate report.
Description Killing features Perform a large-scale scans using Nmap! Allows you to use Masscan to scan targets and execute Nmap on detected ports with
MAT: Mask-Aware Transformer for Large Hole Image Inpainting
MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This
Second Order Optimization and Curvature Estimation with K-FAC in JAX.
KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.
NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This
Georeferencing large amounts of data for free.
Geolocate Georeferencing large amounts of data for free. Special thanks to @brunodepauloalmeida and the whole team for the contributions. How? It's us
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement
MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!
Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.
MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time
SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E
Code for intrusion detection system (IDS) development using CNN models and transfer learning
Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus
Python code to control laboratory hardware and perform Bayesian reaction optimization on the MIT Make-It system for chemical synthesis
Description This repository contains code accompanying the following paper on the Make-It robotic flow chemistry platform developed by the Jensen Rese
This is the course repository for the Spring 2022 iteration of MACS 30123 "Large-Scale Computing for the Social Sciences" at the University of Chicago.
Large-Scale Computing for the Social Sciences Spring 2022 - MACS 30123/MAPS 30123/PLSC 30123 Instructor Information TA Information TA Information Cour
A toolkit for Lagrangian-based constrained optimization in Pytorch
Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of
Guide to using pre-trained large language models of source code
Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.
30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series
Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision
MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for
Large-scale language modeling tutorials with PyTorch
Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로
Framework for evaluating ANNS algorithms on billion scale datasets.
Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools
Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.
OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.
TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)
LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale
DeepGNN is a framework for training machine learning models on large scale graph data.
DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].
Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.
sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or
Audio-analytics for music-producers! Automate tedious tasks such as musical scale detection, BPM rate classification and audio file conversion.
Click here to be re-directed to the Beat Inspect Streamlit Web-App You are a music producer? Let's get in touch via LinkedIn Fundamental Analytics for
Athena is the only tool that you will ever need to optimize your portfolio.
Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,
Repository for DNN training, theory to practice, part of the Large Scale Machine Learning class at Mines Paritech
DNN Training, from theory to practice This repository is complementary to the deep learning training lesson given to les Mines ParisTech on the 11th o
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto
EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M
graphical orbitational simulation of solar system planets with real values and physics implemented so you get a nice elliptical orbits. you can change timestamp value or scale from source code idc.
solarSystemOrbitalSimulation graphical orbitational simulation of solar system planets with real values and physics implemented so you get a nice elli
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M
IPscan - This Script is Framework To automate IP process large scope For Bug Hunting
IPscan This Script is Framework To automate IP process large scope For Bug Hunti
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS
autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the
OMLT: Optimization and Machine Learning Toolkit
OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.
LightGBM + Optuna: no brainer
AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin
Large-Scale Unsupervised Object Discovery
Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.
Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.
Implementation of linesearch Optimization Algorithms in Python
Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti
Large-scale Knowledge Graph Construction with Prompting
Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)
An open-source hyper-heuristic framework for multi-objective optimization
MOEA-HH An open-source hyper-heuristic framework for multi-objective optimization. Introduction The multi-objective optimization technique is widely u
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)
A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain
Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom
FewBit — a library for memory efficient training of large neural networks
FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back
This repository is the code of the paper Accelerating Deep Reinforcement Learning for Digital Twin Network Optimization with Evolutionary Strategies
ES_OTN_Public Carlos Güemes Palau, Paul Almasan, Pere Barlet Ros, Albert Cabellos Aparicio Contact us: [email protected], contactus@bn
Filtering variational quantum algorithms for combinatorial optimization
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy
Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve
Kartothek - a Python library to manage large amounts of tabular data in a blob store
Kartothek - a Python library to manage (create, read, update, delete) large amounts of tabular data in a blob store
Crypto Portfolio Clustering with and without optimization techniques (elbow method, PCA).
Crypto Portfolio Clustering Crypto Portfolio Clustering with and without optimization techniques (elbow method, PCA). Analysis This is an anlysis of c
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.
Opencontactbook - Bulk-manage large numbers of vCard contacts with built-in geolocation
Open Contact Book Open Contact Book is a buiness-oriented, cross-platform, Pytho
SuperSonic, a new open-source framework to allow compiler developers to integrate RL into compilers easily, regardless of their RL expertise
Automating reinforcement learning architecture design for code optimization. Che
An Empirical Review of Optimization Techniques for Quantum Variational Circuits
QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca
RRT algorithm and its optimization
RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT
GTK and Python based, simple multiple image editor tool
System Monitoring Center GTK3 and Python3 based, simple multiple image editor tool. Note: Development of this application is not completed yet. The ap
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos
Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize
Split large XML files into smaller ones for easy upload
Split large XML files into smaller ones for easy upload. Works for WordPress Posts Import and other XML files.
LINUX-AOS (Automatic Optimization System)
LINUX-AOS (Automatic Optimization System)
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.
Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E
Fibonacci Method Gradient Descent
An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How
Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner
Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks
Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app
Python code for the paper How to scale hyperparameters for quickshift image segmentation
How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio
Improved Fitness Optimization Landscapes for Sequence Design
ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In
In the AI for TSP competition we try to solve optimization problems using machine learning.
AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.
shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t
A small scale relica of bank management system using the MySQL queries in the python language.
Bank_Management_system This is a Bank Management System Database Project. Abstract: The main aim of the Bank Management Mini project is to keep record
Storing, versioning, and downloading files from S3 made as easy as using open() in Python. Caching included.
open(LARGE) Storing, versioning, and downloading files from S3 made as easy as using open() in Python. Caching included. Motivation Oftentimes, especi
Continuous Security Group Rule Change Detection & Response at scale
Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl
Tools for mathematical optimization region
Tools for mathematical optimization region
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)
package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.
Climin is a Python package for optimization, heavily biased to machine learning scenarios
climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form
GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'
Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104
Visual Python and C++ nanosecond profiler, logger, tests enabler
Look into Palanteer and get an omniscient view of your program Palanteer is a set of lean and efficient tools to improve the quality of software, for
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation
PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.
Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".
SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)
Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio
this repo store a Awoesome telegram bot for protect from your large group from bot attack.
this repo store a Awoesome telegram bot for protect from your large group from bot attack.
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.
PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation
PyTorch implementation of "Optimization Planning for 3D ConvNets"
Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching
Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very