4572 Repositories
Python pytorch-segmentation-detection Libraries
Benchmark VAE - Library for Variational Autoencoder benchmarking
Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS
FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using
A video scene detection algorithm is designed to detect a variety of different scenes within a video
Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logically and chronologically related shots taken in a specific order to depict an over-arching concept or story.
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net
BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete
Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch
pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar
Snake - Code for "Deep Snake for Real-Time Instance Segmentation" CVPR 2020 oral
Good news! Snake algorithms exhibit state-of-the-art performances on COCO dataset: DANCE Deep Snake for Real-Time Instance Segmentation Deep Snake for
Keras-retinanet - Keras implementation of RetinaNet object detection.
Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,
Tianshou - An elegant PyTorch deep reinforcement learning library.
Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on
AutoGluon: AutoML for Text, Image, and Tabular Data
AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo
Most popular metrics used to evaluate object detection algorithms.
Most popular metrics used to evaluate object detection algorithms.
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
Realtime YOLO Monster Detection With Non Maximum Supression
Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net
PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving
Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o
KoBERT - Korean BERT pre-trained cased (KoBERT)
KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning
nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).
Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js
GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github
U-2-Net: U Square Net - Modified for paired image training of style transfer
U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.
Client - 🔥 A tool for visualizing and tracking your machine learning experiments
Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.
Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som
Credit fraud detection in Python using a Jupyter Notebook
Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn library, and judging the performance based on accuracy, precision, recall and f1 score
Multi agent DDPG algorithm written in Python + Pytorch
Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.
Videocaptioning.pytorch - A simple implementation of video captioning
pytorch implementation of video captioning recommend installing pytorch and pyth
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.
Image-popularity-score - A novel deep regression method for image scoring.
Image-popularity-score - A novel deep regression method for image scoring.
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project
BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features are extracted using the pre-trained CNN.
Faza - Faza terminal, Faza help to beginners for pen testing
Faza terminal simple tool for pen testers Use small letter only for commands Don't use space after command 'help' for more information Installation gi
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.
Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions
🐾 Semantic segmentation of paws from cute pet images (PyTorch)
🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme
Image Processing, Image Smoothing, Edge Detection and Transforms
opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1
Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
Siamese Deep Neural Networks for Semantic Text Similarity PyTorch A repository c
MultiTaskLearning - Multi Task Learning for 3D segmentation
Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!
Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately
Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima
Face_mosaic - Mosaic blur processing is applied to multiple faces appearing in the video
動機 face_recognitionを使用して得られる顔座標は長方形であり、この座標をそのまま用いてぼかし処理を行った場合得られる画像は醜い。 それに対してモ
A Survey on Deep Learning Technique for Video Segmentation
A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati
A minimal implementation of Gaussian process regression in PyTorch
pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b
SOTA easy to use PyTorch-based DL training library
Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.
EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI
View model summaries in PyTorch!
torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡
Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re
Natural Language Processing for Adverse Drug Reaction (ADR) Detection
Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a
A library for uncertainty quantification based on PyTorch
Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation
The codebase for Data-driven general-purpose voice activity detection.
Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."
PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple
Applying PVT to Semantic Segmentation
Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)
Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas
WaveFake: A Data Set to Facilitate Audio DeepFake Detection
WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data
A state-of-the-art semi-supervised method for image recognition
Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.
Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD
A simple consistency training framework for semi-supervised image semantic segmentation
PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s
Semi-supervised semantic segmentation needs strong, varied perturbations
Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks
PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the
Learning Saliency Propagation for Semi-supervised Instance Segmentation
Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)
SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR
Semi-supevised Semantic Segmentation with High- and Low-level Consistency
Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing
CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019
USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018
Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)
Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J
Weakly Supervised Segmentation by Tensorflow.
Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)
SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai
Semi-supervised learning for object detection
Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object
Weakly-supervised object detection.
Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa
CSD: Consistency-based Semi-supervised learning for object Detection
CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose
Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.
Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper
Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa
PyTorch implementation for Graph Contrastive Learning with Augmentations
Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*
SimulLR - PyTorch Implementation of SimulLR
PyTorch Implementation of SimulLR There is an interesting work[1] about simultan
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.
opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.
Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
Remote sensing change detection using PaddlePaddle
Change Detection Laboratory Developing and benchmarking deep learning-based remo
An efficient PyTorch implementation of the evaluation metrics in recommender systems.
recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).
GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"
SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."
Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is
An implementation of Deep Graph Infomax (DGI) in PyTorch
DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom
ncnn is a high-performance neural network inference framework optimized for the mobile platform
ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme
PyTorch-based framework for Deep Hedging
PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias
ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021
SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
Improving Object Detection by Estimating Bounding Box Quality Accurately
Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac
Indonesia's negative news detection using gaussian naive bayes with Django+Scikir Learn
Introduction Indonesia's negative news detection using gaussian naive bayes build with Django and Scikit Learn. There is also any features, are: Input
Bianace Prediction Pytorch Model
Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t