1357 Repositories
Python self-critical-sequence-training Libraries
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models
PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities
Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine
Unsupervised Language Model Pre-training for French
FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"
ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)
Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》
RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
A self-hosted streaming platform with Discord authentication, auto-recording and more!
A self-hosted streaming platform with Discord authentication, auto-recording and more!
A discord self bot that replies to messages using cleverbot
cleverbot-discord-self A discord self bot that replies to messages using cleverbot Bot will respond to DMs and channels in the channels list. Need to
Using CNN to mimic the driver based on training data from Torcs
Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)
auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip
Discondelete, is a Discord self-bot to delete dm's or purge all messages from a guild.
Discondelete Discondelete, is a Discord self-bot to delete dm's or purge all messages from a guild. Report Bug · Request Feature Table of Contents Abo
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.03670
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022
Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any
A simple program for training and testing vit
Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.
PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)
Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Self-Supervised Learning
Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t
A python interface for training Reinforcement Learning bots to battle on pokemon showdown
The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".
SSL-Backdoor Abstract Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representation
Self-Supervised CNN-GCN Autoencoder
GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness
Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.
BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator
A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files.
ObjSequenceViewer V0.5 A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files. Installation: pip
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
Baserow is an open source no-code database tool and Airtable alternative
Baserow is an open source no-code database tool and Airtable alternative
Self-hosted, easily-deployable monitoring and alerts service - like a lightweight PagerDuty
Cabot Maintainers wanted Cabot is stable and used by hundreds of companies and individuals in production, but it is not actively maintained. We would
Atari2600 Training / Evaluation with RLlib
Training Atari2600 by Reinforcement Learning Train Atari2600 and check how it works! How to Setup You can setup packages on your local env. $ make set
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases, and capable of utilizing different hardware options with no code changes required.
A system for quickly generating training data with weak supervision
Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat
Self-Supervised Image Denoising via Iterative Data Refinement
Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"
Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.
rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio
Unimodal Face Classification with Multimodal Training
Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution
DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis
Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space
SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)
Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
iBOT: Image BERT Pre-Training with Online Tokenizer
Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》
Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight
Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning
Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.
Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning
CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki
Kubernetes-native workflow automation platform for complex, mission-critical data and ML processes at scale. It has been battle-tested at Lyft, Spotify, Freenome, and others and is truly open-source.
Flyte Flyte is a workflow automation platform for complex, mission-critical data, and ML processes at scale Home Page · Quick Start · Documentation ·
Uni-Fold: Training your own deep protein-folding models.
Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.
Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifically, recipes aims to provide- Consistent access to pre-trained SOTA models ready for production- Reference implementations for SOTA research reproducibility, and infrastructure to guarantee correctness, efficiency, and interoperability.
iBOT: Image BERT Pre-Training with Online Tokenizer
Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.
SimMIM: A Simple Framework for Masked Image Modeling
SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of
An end to end ASR Transformer model training repo
END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │
Training code for Korean multi-class sentiment analysis
KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization
CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090
GLIP: Grounded Language-Image Pre-training
GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal
The best solution of the Weather Prediction track in the Yandex Shifts challenge
yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.
CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,
This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.
AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》
SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization
CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090
Post-Training Quantization for Vision transformers.
PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in
Robust Lane Detection via Expanded Self Attention (WACV 2022)
Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie
Uni-Fold: Training your own deep protein-folding models
Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),
The easiest tool for extracting radiomics features and training ML models on them.
Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi
Data pipelines for both TensorFlow and PyTorch!
rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding
Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"
Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)
Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"
Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted
Self-adjusting, auto-compounding multi-pair DCA crypto trading bot using Python, AWS Lambda & 3Commas API
Self-adjusting, auto-compounding multi-pair DCA crypto trading bot using Python, AWS Lambda & 3Commas API The following code describes how we can leve
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models
Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
Yas CRNN model training - Yet Another Genshin Impact Scanner
Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat
Reinforcement learning for self-driving in a 3D simulation
SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"
Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre
InsCLR: Improving Instance Retrieval with Self-Supervision
InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.
Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu
Adaptive Denoising Training (ADT) for Recommendation.
DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images
Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.
AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20
Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed
Simple, high-school-leveled sequence library written in Python / 간단한 고등학교 수준 수열 라이브러리 (Python)
Simple, high-school-leveled sequence library written in Python
Rainbow DQN implementation accompanying the paper "Fast and Data-Efficient Training of Rainbow" which reaches 205.7 median HNS after 10M frames. 🌈
Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"
SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)
Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01
TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.
TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch