93 Repositories
Python synthetic-gradients Libraries
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"
Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors
SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development
Conditional Gradients For The Approximately Vanishing Ideal
Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro
Learning Synthetic Environments and Reward Networks for Reinforcement Learning
Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (
Learning to Predict Gradients for Semi-Supervised Continual Learning
Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are statistical models that allow these properties to be simulated (Joe 2014). As such, copula generated data have shown potential to improve the generalization of machine learning (ML) emulators (Meyer et al. 2021) or anonymize real-data datasets (Patki et al. 2016).
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients
LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets
HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)
A Multipurpose Library for Synthetic Time Series Generation in Python
TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library
Fine tuning keras-ocr python package with custom synthetic dataset from scratch
OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy
lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"
AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples Above is an adversarial example: the slightly pert
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1
A library to generate synthetic time series data by easy-to-use factors and generator
timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge
Synthetic Scene Text from 3D Engines
Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S
Learning from Synthetic Humans, CVPR 2017
Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,
Random dataframe and database table generator
Random database/dataframe generator Authored and maintained by Dr. Tirthajyoti Sarkar, Fremont, USA Introduction Often, beginners in SQL or data scien
Synthetic Data Generation for tabular, relational and time series data.
An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github
Multiview 3D object detection on MultiviewC dataset through moft3d.
Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop
A simple library that implements CLIP guided loss in PyTorch.
pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features
MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients
Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback
Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning
Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.
SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye
A procedural Blender pipeline for photorealistic training image generation
BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features
Metrics to evaluate quality and efficacy of synthetic datasets.
An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://
A Python package for causal inference using Synthetic Controls
Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim
A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform
A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform
IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization
IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA results for single-image motion deblurring, image deraining, image denoising (synthetic and real data), and dual-pixel defocus deblurring.
Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"
Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique
AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.
Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding
The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i
Can we learn gradients by Hamiltonian Neural Networks?
Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a
A tutorial for people to run synthetic data replica's from source healthcare datasets
Synthetic-Data-Replica-for-Healthcare Description What is this? A tailored hands-on tutorial showing how to use Python to create synthetic data replic
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using
Estimating Example Difficulty using Variance of Gradients
Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the
Official implementation of the paper: "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech"
LDNet Author: Wen-Chin Huang (Nagoya University) Email: [email protected] This is the official implementation of the paper "LDNet
Retail-Sim is python package to easily create synthetic dataset of retaile store.
Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.
Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"
SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project
Synthetic structured data generators
Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati
Official implementation of the paper: "LDNet: Unified Listener Dependent Modeling in MOS Prediction for Synthetic Speech"
LDNet Author: Wen-Chin Huang (Nagoya University) Email: [email protected] This is the official implementation of the paper "LDNet
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).
Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn
Multiview 3D object detection on MultiviewC dataset through moft3d.
Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction
SynNet - synthetic tree generation using neural networks
SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s
A synthetic texture-invariant dataset for object detection of UAVs
A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.
The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features
MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter
PyTorch code to run synthetic experiments.
Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}
functorch is a prototype of JAX-like composable function transforms for PyTorch.
functorch is a prototype of JAX-like composable function transforms for PyTorch.
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)
Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch
disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
pytorch-a2c-ppo-acktr Update (April 12th, 2021) PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021
🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun
Synthetic LiDAR sequential point cloud dataset with point-wise annotations
SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.
IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a
SDL: Synthetic Document Layout dataset
SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.
This is the dataset and code release of the OpenRooms Dataset.
This is the dataset and code release of the OpenRooms Dataset.
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)
Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision
MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot
Synthetic Humans for Action Recognition, IJCV 2021
SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human
A collection of various RL algorithms like policy gradients, DQN and PPO. The goal of this repo will be to make it a go-to resource for learning about RL. How to visualize, debug and solve RL problems. I've additionally included playground.py for learning more about OpenAI gym, etc.
Reinforcement Learning (PyTorch) 🤖 + 🍰 = ❤️ This repo will contain PyTorch implementation of various fundamental RL algorithms. It's aimed at making
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"
SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm
Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these
A curated list of awesome synthetic data for text location and recognition
awesome-SynthText A curated list of awesome synthetic data for text location and recognition and OCR datasets. Text location SynthText SynthText_Chine
A synthetic data generator for text recognition
TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.
PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)
Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O
Synthetic data for the people.
zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].
Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow
Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes in a variety of languages.
Mimesis - Fake Data Generator Description Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes
Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes in a variety of languages.
Mimesis - Fake Data Generator Description Mimesis is a high-performance fake data generator for Python, which provides data for a variety of purposes