1354 Repositories
Python topic-model Libraries
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.
OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)
Model-based reinforcement learning in TensorFlow
Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,
This repo is customed for VisDrone.
Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble
Dynamic Slimmable Network (CVPR 2021, Oral)
Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-
Top2Vec is an algorithm for topic modeling and semantic search.
Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"
PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction
Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object
Implementation of the Swin Transformer in PyTorch.
Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification
STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in
This repo is customed for VisDrone.
Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble
BAyesian Model-Building Interface (Bambi) in Python.
Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to
(AAAI' 20) A Python Toolbox for Machine Learning Model Combination
combo: A Python Toolbox for Machine Learning Model Combination Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License
Model summary in PyTorch similar to `model.summary()` in Keras
Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.
Microsoft Machine Learning for Apache Spark
Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.
Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear
A python library for Bayesian time series modeling
PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO
Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.
SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow
Generate text images for training deep learning ocr model
New version release:https://github.com/oh-my-ocr/text_renderer Text Renderer Generate text images for training deep learning OCR model (e.g. CRNN). Su
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.
Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra
Textboxes : Image Text Detection Model : python package (tensorflow)
shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"
TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from
a deep learning model for page layout analysis / segmentation.
OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-
ocroseg - This is a deep learning model for page layout analysis / segmentation.
ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by
Text page dewarping using a "cubic sheet" model
page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"
NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems
[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu
A containerized REST API around OpenAI's CLIP model.
OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta
Gaphor is the simple modeling tool
Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen
A curated list of neural network pruning resources.
A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.
Model parallel transformers in Jax and Haiku
Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo
Baselines for TrajNet++
TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"
Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator
involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!
Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper
Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage
Sequential model-based optimization with a `scipy.optimize` interface
Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements
Sequential Model-based Algorithm Configuration
SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho
Model analysis tools for TensorFlow
TensorFlow Model Analysis TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on
Python Library for Model Interpretation/Explanations
Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system
L2X - Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation.
L2X Code for replicating the experiments in the paper Learning to Explain: An Information-Theoretic Perspective on Model Interpretation at ICML 2018,
FairML - is a python toolbox auditing the machine learning models for bias.
======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
Visual analysis and diagnostic tools to facilitate machine learning model selection.
Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University
Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ
Code for "High-Precision Model-Agnostic Explanations" paper
Anchor This repository has code for the paper High-Precision Model-Agnostic Explanations. An anchor explanation is a rule that sufficiently “anchors”
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.
Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip
Mesh TensorFlow: Model Parallelism Made Easier
Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow
tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.
Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.
Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch
COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a
Open source platform for the machine learning lifecycle
MLflow: A Machine Learning Lifecycle Platform MLflow is a platform to streamline machine learning development, including tracking experiments, packagi
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
A demo of Prometheus+Grafana for monitoring an ML model served with FastAPI.
ml-monitoring Jeremy Jordan This repository provides an example setup for monitoring an ML system deployed on Kubernetes.
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.
SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official
Model search is a framework that implements AutoML algorithms for model architecture search at scale
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers).
Gaphor is the simple modeling tool
Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply copy/paste wherever you wish.
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.
ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module
PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。
Kindle is an easy model build package for PyTorch.
Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file. Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.
FastAPI Skeleton App to serve machine learning models production-ready.
FastAPI Model Server Skeleton Serving machine learning models production-ready, fast, easy and secure powered by the great FastAPI by Sebastián Ramíre
Topic Modelling for Humans
gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ
NLP library designed for reproducible experimentation management
Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.
Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you
Scikit-learn style model finetuning for NLP
Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet
Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
Beautiful visualizations of how language differs among document types.
Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr
:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!
Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o
A Python toolbox for gaining geometric insights into high-dimensional data
"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview
commonfate 📦commonfate 📦 - Common Fate Model and Transform.
Common Fate Transform and Model for Python This package is a python implementation of the Common Fate Transform and Model to be used for audio source
Inner ear models for Python
cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return
Pyroomacoustics is a package for audio signal processing for indoor applications. It was developed as a fast prototyping platform for beamforming algorithms in indoor scenarios.
Summary Pyroomacoustics is a software package aimed at the rapid development and testing of audio array processing algorithms. The content of the pack
MongoEngine flask extension with WTF model forms support
Flask-MongoEngine Info: MongoEngine for Flask web applications. Repository: https://github.com/MongoEngine/flask-mongoengine About Flask-MongoEngine i
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.
ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.
Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the
Efficient 3D Backbone Network for Temporal Modeling
VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper