374 Repositories
Python hyper-parameter-optimization Libraries
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque
A parallel branch-and-bound engine for Python.
pybnb A parallel branch-and-bound engine for Python. This software is copyright (c) by Gabriel A. Hackebeil (gabe.hacke
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit
STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).
AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.
Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.
A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo
Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments
COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment
Simulation and Parameter Estimation in Geophysics
Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task
KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a
log4j2 passive burp rce scanning tool get post cookie full parameter recognition
log4j2_burp_scan 自用脚本log4j2 被动 burp rce扫描工具 get post cookie 全参数识别,在ceye.io api速率限制下,最大线程扫描每一个参数,记录过滤已检测地址,重复地址 token替换为你自己的http://ceye.io/ token 和域名地址
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:
A simple and lightweight genetic algorithm for optimization of any machine learning model
geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins
Parameter Efficient Deep Probabilistic Forecasting
PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr
Pretrained Cost Model for Distributed Constraint Optimization Problems
Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline
IDA scripts for hypervisor (Hyper-v) analysis and reverse engineering automation
Re-Scripts IA32-VMX-Helper (IDA-Script) IA32-MSR-Decoder (IDA-Script) IA32 VMX Helper It's an IDA script (Updated IA32 MSR Decoder) which helps you to
A simple and lightweight genetic algorithm for optimization of any machine learning model
geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat
Python implementation of Bayesian optimization over permutation spaces.
Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o
PennyLane is a cross-platform Python library for differentiable programming of quantum computers
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne
Slientruss3d : Python for stable truss analysis tool
slientruss3d : Python for stable truss analysis tool Desciption slientruss3d is a python package which can solve the resistances, internal forces and
A library for differentiable nonlinear optimization.
Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-
A semismooth Newton method for elliptic PDE-constrained optimization
sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.
Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)
A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.
8QueensGenetic A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD. The project uses the Kivy cross-p
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:
Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.
NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction
Ant Colony Optimization for Traveling Salesman Problem
tsp-aco Ant Colony Optimization for Traveling Salesman Problem Dependencies Python 3.8 tqdm numpy matplotlib To run the solver run main.py from the p
An optimized prompt tuning strategy comparable to fine-tuning across model scales and tasks.
P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi
Large scale and asynchronous Hyperparameter Optimization at your fingertip.
Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder
g2o: A General Framework for Graph Optimization
g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee
Yaml - Loggers are like print() statements
Upgrade your print statements Loggers are like print() statements except they also include loads of other metadata: timestamp msg (same as print!) arg
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python
Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.
Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.
DA2Lite is an automated model compression toolkit for PyTorch.
DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari
A Python step-by-step primer for Machine Learning and Optimization
early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors
By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of
Python Automated Machine Learning library for tabular data.
Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie
Dynamic Programming-Join Optimization Algorithm
DP-JOA Join optimization is the process of optimizing the joining, or combining, of two or more tables in a database. Here is a simple join optimizati
Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi
Visualization of numerical optimization algorithms
Visualization of numerical optimization algorithms
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"
Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"
Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht
Time Series Cross-Validation -- an extension for scikit-learn
TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini
Statistical and Algorithmic Investing Strategies for Everyone
Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic
Gaussian Process Optimization using GPy
End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
CVXPY is a Python-embedded modeling language for convex optimization problems.
CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio
Nevergrad - A gradient-free optimization platform
Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati
A Python module for parallel optimization of expensive black-box functions
blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e
Neural Architecture Search Powered by Swarm Intelligence 🐜
Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle
A hyperparameter optimization framework
Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software
Black box hyperparameter optimization made easy.
BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.
Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica
ProsePainter combines direct digital painting with real-time guided machine-learning based image optimization.
ProsePainter Create images by painting with words. ProsePainter combines direct digital painting with real-time guided machine-learning based image op
Multi-objective constrained optimization for energy applications via tree ensembles
Multi-objective constrained optimization for energy applications via tree ensembles
Explaining Hyperparameter Optimization via PDPs
Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
A burp-suite plugin that extract all parameter names from in-scope requests
ParamsExtractor A burp-suite plugin that extract all parameters name from in-scope requests. You can run the plugin while you are working on the targe
Safe Policy Optimization with Local Features
Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi
Neural Scene Flow Prior (NeurIPS 2021 spotlight)
Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste
Tools for Optuna, MLflow and the integration of both.
HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"
PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
A Lightweight Hyperparameter Optimization Tool 🚀
Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin
Source code for deep symbolic optimization.
Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)
Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene
Generalized and Efficient Blackbox Optimization System.
OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a
Bayesian Optimization Library for Medical Image Segmentation.
bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021
Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .
ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".
PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".
Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".
L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization.
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation
A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the moment, only TensorFlow sequential models are supported. Interfaces to either the Pyomo or Gurobi modeling environments are offered.
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica
Dynamica causal Bayesian optimisation
Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th