860 Repositories
Python attention-feature-distillation Libraries
Feature engineering and machine learning: together at last
Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu
This is an open solution to the Home Credit Default Risk challenge 🏡
Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection
Estimation of whether or not the persons given information will have diabetes.
Diabetes Business Problem : It is desired to develop a machine learning model that can predict whether people have diabetes when their characteristics
Transformer in Vision
Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C
A curated list of efficient attention modules
awesome-fast-attention A curated list of efficient attention modules
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification
GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"
PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul
Python Computer Vision from Scratch
This repository explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.
Seq2seq attn - Use the Seq2Seq method to implement machine translation and introduce Attention mechanism to improve the results
Seq2seq_attn Use the Seq2Seq method to implement machine translation and use the
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"
Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism
Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".
RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch
RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding
Collaborative Knowledge Distillation for Heterogeneous Information Network Embed
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection
CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"
Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"
BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat
An implementation of the efficient attention module.
Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially
This repository contains an implementation of the Permutohedral Attention Module in Pytorch
Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)
EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the
Pytorch implementation of Compressive Transformers, from Deepmind
Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran
Implementation of Axial attention - attending to multi-dimensional data efficiently
Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler
My take on a practical implementation of Linformer for Pytorch.
Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v
Implementation of Kronecker Attention in Pytorch
Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch
Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".
SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment
Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".
SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation
Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation
LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer
ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified
Repository of Vision Transformer with Deformable Attention
Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs
Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep learning frameworks to pursue optimal inference performance.
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces
3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.
inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le
Semi-Automated Data Processing
Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meaningful decision to achieve a low-bias and low-variance model.
Blockchain with crypto transaction feature
python script that asks users for their name, who they are sending J2 coin too(fictional cryptocurrency) and how much they're sending. it then prints the transaction detail in words and prints the hash number of the block
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution
PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition
Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing
FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud
Alignment Attention Fusion framework for Few-Shot Object Detection
AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)
A modern, easy to use, feature-rich, and async ready API wrapper for Discord written in Python.
disfork A modern, easy to use, feature-rich, and async ready API wrapper for Discord written in Python. Key Features Modern Pythonic API using async a
Implementation of a Transformer using ReLA (Rectified Linear Attention)
ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 Tensorflow 2.0
NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab
Feature engineering library that helps you keep track of feature dependencies, documentation and schema
Feature engineering library that helps you keep track of feature dependencies, documentation and schema
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).
CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.
Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly
A simple version for graphfpn
GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn
This is a super simple visualization toolbox (script) for transformer attention visualization ✌
Trans_attention_vis This is a super simple visualization toolbox (script) for transformer attention visualization ✌ 1. How to prepare your attention m
☄️ High performance, easy to use and feature-rich Solana SDK for Python.
Solathon is an high performance, easy to use and feature-rich Solana SDK for Python. Easy for beginners, powerful for real world applications.
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?
RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]
DeltaPy - Tabular Data Augmentation (by @firmai)
DeltaPy — Tabular Data Augmentation & Feature Engineering Finance Quant Machine Learning ML-Quant.com - Automated Research Repository Introduction T
Demonstration of transfer of knowledge and generalization with distillation
Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://
Automated Time Series Forecasting
AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod
An open source python library for automated feature engineering
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to
An intuitive library to extract features from time series
Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra
Highly comparative time-series analysis
〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
Medical appointments No-Show classifier
Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct
Regularization and Feature Selection in Least Squares Temporal Difference Learning
Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.
Datasets, tools, and benchmarks for representation learning of code.
The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et
Fast convergence of detr with spatially modulated co-attention
Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong
Custom studies about block sparse attention.
Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)
Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution
HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email: 18186470991@163.
Code repo for the book "Feature Engineering for Machine Learning," by Alice Zheng and Amanda Casari, O'Reilly 2018
feature-engineering-book This repo accompanies "Feature Engineering for Machine Learning," by Alice Zheng and Amanda Casari. O'Reilly, 2018. The repo
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome
bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.
Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning
Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include
Python directory buster, multiple threads, gobuster-like CLI, web server brute-forcer, URL replace pattern feature.
pybuster v1.1 pybuster is a tool that is used to brute-force URLs of web servers. Features Directory busting (URI) URL replace patterns (put PYBUSTER
A simple Tensorflow based library for deep and/or denoising AutoEncoder.
libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P
TSIT: A Simple and Versatile Framework for Image-to-Image Translation
TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p
[ECCV 2020] XingGAN for Person Image Generation
Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl
DAGAN - Dual Attention GANs for Semantic Image Synthesis
Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀
Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
A unified framework to jointly model images, text, and human attention traces.
connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]
Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time
Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM
OverFeat is a Convolutional Network-based image classifier and feature extractor.
OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat
Tensorflow implementation of soft-attention mechanism for video caption generation.
SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"
Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent
Image captioning - Tensorflow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Introduction This neural system for image captioning is roughly based on the paper "Show, Attend and Tell: Neural Image Caption Generation with Visual
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept
Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation
Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.