5260 Repositories
Python compositional-contrastive-learning Libraries
Learning kernels to maximize the power of MMD tests
Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"
Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W
Create images and texts with the First Order Generative Adversarial Networks
First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.
Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,
A stable algorithm for GAN training
DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Toward Multimodal Image-to-Image Translation
BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our
Official repository for ABC-GAN
ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)
gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.
Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"
Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.
Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C
Image super-resolution through deep learning
srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images
Image Completion with Deep Learning in TensorFlow
Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.
CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
Learning What and Where to Draw
###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201
Text to image synthesis using thought vectors
Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions
A simple interface for editing natural photos with generative neural networks.
Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural
Interactive Image Generation via Generative Adversarial Networks
iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for
A DCGAN to generate anime faces using custom mined dataset
Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning
AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.
Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.
FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared
Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer
Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.
Powerful and efficient Computer Vision Annotation Tool (CVAT)
Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.
Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl
disentanglement_lib is an open-source library for research on learning disentangled representations.
disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe
Ladder Variational Autoencoders (LVAE) in PyTorch
Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at
A list of all named GANs!
The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re
Build Graph Nets in Tensorflow
Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact [email protected] for comments a
Hummingbird compiles trained ML models into tensor computation for faster inference.
Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se
Natural Intelligence is still a pretty good idea.
Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.
Metric learning algorithms in Python
metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met
Deep metric learning methods implemented in Chainer
Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V
A high performance implementation of HDBSCAN clustering.
HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates
PyClustering is a Python, C++ data mining library.
pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each algorithm or model. C++ pyclustering library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.
FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu
MiniSom is a minimalistic implementation of the Self Organizing Maps
MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N
Computations and statistics on manifolds with geometric structures.
Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility
health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p
Predicting Tweet Sentiment Maching Learning and streamlit
Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi
Exemplary lightweight and ready-to-deploy machine learning project
Exemplary lightweight and ready-to-deploy machine learning project
The hippynn python package - a modular library for atomistic machine learning with pytorch.
The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].
CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R
Machine learning algorithms implementation
Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"
Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,
Official implementation for "Image Quality Assessment using Contrastive Learning"
Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2
reXmeX is recommender system evaluation metric library.
A general purpose recommender metrics library for fair evaluation.
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
Human Pose estimation with TensorFlow framework
Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and
Simple Baselines for Human Pose Estimation and Tracking
Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
implementation of the KNN algorithm on crab biometrics dataset for CS16
crab-knn implementation of the KNN algorithm in Python applied to biometrics data of purple rock crabs (leptograpsus variegatus) to classify the sex o
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"
Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".
Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E
A deep-learning pipeline for segmentation of ambiguous microscopic images.
Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se
Full-featured Decision Trees and Random Forests learner.
CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents
DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports
Recurrent Conditional Query Learning
Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C
Low-dose Digital Mammography with Deep Learning
Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li
Stochastic gradient descent with model building
Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
PyTorch implementation of MulMON
MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"
Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and
Improving Compound Activity Classification via Deep Transfer and Representation Learning
Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,
Codebase for the paper titled "Continual learning with local module selection"
This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env
MRI reconstruction (e.g., QSM) using deep learning methods
deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar
Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)
Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop
Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge
Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio
Code-free deep segmentation for computational pathology
NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation
On Effective Scheduling of Model-based Reinforcement Learning
On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.
KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as
Predict halo masses from simulations via graph neural networks
HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati
Learning a mapping from images to psychological similarity spaces with neural networks.
LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.
Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?