62 Repositories
Python correspondence-distributions Libraries
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions
SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A
Frbmclust - Clusterize FRB profiles using hierarchical clustering, plot corresponding parameters distributions
frbmclust Getting Started Clusterize FRB profiles using hierarchical clustering,
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).
Analyzing the most strategic words to guess on Wordle, based on letter frequency distributions
wordle-analysis Evaluating different heuristics to determine the most effective solving strategy and building an AI-powered assistant tool to help you
Deep ViT Features as Dense Visual Descriptors
dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
Natural Posterior Network This repository provides the official implementation o
Plux - A dynamic code loading framework for building plugable Python distributions
Plux plux is the dynamic code loading framework used in LocalStack. Overview The
SCNet: Learning Semantic Correspondence
SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense matching code is contributed by Rafael S. Rezende (rafael.sampaio_de
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"
CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)
Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)
Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue
Official Implementation of VAT
Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj
Monitor the stability of a pandas or spark dataframe ⚙︎
Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.
Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.
VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp
Oregon State University grade distributions from Fall 2018 through Summer 2021
Oregon State University Grades Oregon State University grade distributions from Fall 2018 through Summer 2021 obtained through a Freedom Of Informatio
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting
QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning
Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)
TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,
Universal Probability Distributions with Optimal Transport and Convex Optimization
Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)
Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"
PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe
Randomized Correspondence Algorithm for Structural Image Editing
===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"
CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset
GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)
Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe
Application for easy configuration of swap file and swappiness priority in slackware and others linux distributions.
Swap File Program created with the objective of assisting in the configuration of swap file in Distributions such as Slackware. Required packages: pyt
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow
Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio
statDistros is a Python library for dealing with various statistical distributions
StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.
Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove
The Official PyTorch Implementation of DiscoBox.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib
Posterior predictive distributions quantify uncertainties ignored by point estimates.
Posterior predictive distributions quantify uncertainties ignored by point estimates.
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset
Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV
MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr
Learnable Motion Coherence for Correspondence Pruning
Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"
DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer
In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence
CATs: Semantic Correspondence with Transformers
CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation
Pytorch implementation of Generative Models as Distributions of Functions 🌿
Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.
Code release for "COTR: Correspondence Transformer for Matching Across Images"
COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code
Code release for "COTR: Correspondence Transformer for Matching Across Images"
COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh
《Dual-Resolution Correspondence Network》(NeurIPS 2020)
Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)
Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You
Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribution(s) to your data.
Distribution Analyser Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribu
Anaconda is the OS installer used by Fedora, RHEL, CentOS and other Linux distributions.
Anaconda is the OS installer used by Fedora, RHEL, CentOS and other Linux distributions. Documentation Documentation for the Anaconda install
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.
PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.
weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we