343 Repositories
Python distributed-hyperparameter-tuning Libraries
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
The versatile ocean simulator, in pure Python, powered by JAX.
Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros
A high-performance distributed deep learning system targeting large-scale and automated distributed training.
HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"
MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently
Distributed algorithms, reimplemented for fun and practice
Distributed Algorithms Playground for reimplementing and experimenting with algorithms for distributed computing. Usage Running the code for Ring-AllR
Reproducible Data Science at Scale!
Pachyderm: The Data Foundation for Machine Learning Pachyderm provides the data layer that allows machine learning teams to productionize and scale th
Version three of the Accounting Project. You can now connect multiple computers together who are on the same IP (I'm sure I could set it up so it would work on different IP's) and add to a distributed ledger verified by blockchain.
Accounting_Cycle_V3 As I talked about in the second iteration of the accoutning project, I was going to add networking capabilities to the project. Re
DOP-Tuning(Domain-Oriented Prefix-tuning model)
DOP-Tuning DOP-Tuning(Domain-Oriented Prefix-tuning model)代码基于Prefix-Tuning改进. Files ├── seq2seq # Code for encoder-decoder arch
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.
FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code
Pretrained Cost Model for Distributed Constraint Optimization Problems
Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline
BERTMap: A BERT-Based Ontology Alignment System
BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
Prompt Tuning with Rules
PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art
A High-Performance Distributed Library for Large-Scale Bundle Adjustment
MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"
Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t
Automatic learning-rate scheduler
AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition
Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
A Docker image for plotting and farming the Chia™ cryptocurrency on one computer or across many.
An easy-to-use WebUI for crypto plotting and farming. Offers Plotman, MadMax, Chiadog, Bladebit, Farmr, and Forktools in a Docker container. Supports Chia, Cactus, Chives, Flax, Flora, HDDCoin, Maize, N-Chain, Staicoin, and Stor among others.
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)
Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models
LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.
Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho
Distributed, blockchain based hashtables middleware for deduplication of file uploads to the cloud
distributed-blockchain-based-secure-file-dedupe Searching is Distributed, Block and Access List for each upload is unique and it is stored in a single
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol
Demo code for "Logs in distributed systems" webinar
Hexlet Logs Demo Пререквизиты docker-compose python3 Учетка в DataDog Базовое понимание, что такое логи (можно почитать гайд
Primitives for machine learning and data science.
An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt
An optimized prompt tuning strategy comparable to fine-tuning across model scales and tasks.
P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi
Large scale and asynchronous Hyperparameter Optimization at your fingertip.
Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis research in generating more diversified datasets for training and testing. The BinTuner framework is based on OpenTuner, thanks to all contributors for their contributions.
Simple and Distributed Machine Learning
Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy
High performance distributed framework for training deep learning recommendation models based on PyTorch.
PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI platform@Kuaishou Technology, collaborating with ETH. It
SPTAG: A library for fast approximate nearest neighbor search
SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi
Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass
Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel
KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier
fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.
Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in
The pure and clear PyTorch Distributed Training Framework.
The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...
Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported
Management of exclusive GPU access for distributed machine learning workloads
TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting
Hyperparameter tuning for humans
KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c
A distributed deep learning framework that supports flexible parallelization strategies.
FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of
Python Automated Machine Learning library for tabular data.
Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie
A tool to determine optimal projects for Gridcoin crunchers. Maximize your magnitude!
FindTheMag FindTheMag helps optimize your BOINC client for Gridcoin mining. You can group BOINC projects into two groups: "preferred" projects and "mi
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"
Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with
High performance distributed framework for training deep learning recommendation models based on PyTorch.
High performance distributed framework for training deep learning recommendation models based on PyTorch.
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"
Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》
Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ
Aiorq is a distributed task queue with asyncio and redis
Aiorq is a distributed task queue with asyncio and redis, which rewrite from arq to make improvement and include web interface.
Time Series Cross-Validation -- an extension for scikit-learn
TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture
A hyperparameter optimization framework
Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software
Black box hyperparameter optimization made easy.
BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for
Code for the paper "Attention Approximates Sparse Distributed Memory"
Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D
The Python agent for Apache SkyWalking
SkyWalking Python Agent SkyWalking-Python: The Python Agent for Apache SkyWalking, which provides the native tracing abilities for Python project. Sky
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.
Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which
Explaining Hyperparameter Optimization via PDPs
Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex
System Design Assignments as part of Arpit's System Design Masterclass
System Design Assignments The repository contains a set of problem statements around Software Architecture and System Design as conducted by Arpit's S
Unified Distributed Execution
Unified Distributed Execution The framework supports multiple execution backends: Ray, Dask, MPI and MultiProcessing. To run tests you need to install
Complete the code of prefix-tuning in low data setting
Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework
VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-
Tools for Optuna, MLflow and the integration of both.
HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of
An Open-Source Toolkit for Prompt-Learning.
An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6
Qtas(Quite a Storage)is an experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.
Qtas(Quite a Storage)is a experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.
A Lightweight Hyperparameter Optimization Tool 🚀
Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin
Qtas(Quite a Storage)is an experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.
Qtas(Quite a Storage)is a experimental distributed storage system developed by Q-team in BJFU Advanced Computer Network sources.
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation
DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch
Generalized and Efficient Blackbox Optimization System.
OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio
Revealing and Protecting Labels in Distributed Training
Revealing and Protecting Labels in Distributed Training
Migration of Edge-based Distributed Federated Learning
FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric
OneFlow is a performance-centered and open-source deep learning framework.
OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training
ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation
A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training
ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install
A Lightweight Hyperparameter Optimization Tool 🚀
The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"
KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme
Fine-tuning StyleGAN2 for Cartoon Face Generation
Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag
Distributed Synchronization for Python
Distributed Synchronization for Python Tutti is a nearly drop-in replacement for python's built-in synchronization primitives that lets you fearlessly
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa
A fantasy life simulator and role-playing game hybrid distributed as CLI, written in Python 3.
Life is Fantasy Epic (LIFE) A fantasy life simulator and role-playing game hybrid distributed as CLI, written in Python 3. This repository will be pro
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.
Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-safe fashion.