849 Repositories
Python efficient-transformers Libraries
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".
No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21
CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥
ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".
Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy
Pre-training of Graph Augmented Transformers for Medication Recommendation
G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"
Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
XViT - Space-time Mixing Attention for Video Transformer
XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title
Efficient face emotion recognition in photos and videos
This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan
Utilize Korean BERT model in sentence-transformers library
ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.
ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit
jiant is an NLP toolkit
🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"
A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef
SeMask: Semantically Masked Transformers for Semantic Segmentation.
SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]
transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"
Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search
Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).
Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh
🍰 ConnectMP - An easy and efficient way to share data between Processes in Python.
ConnectMP - Taking Multi-Process Data Sharing to the moon 🚀 Contribute · Community · Documentation 🎫 Introduction : 🍤 ConnectMP is the easiest and
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).
BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation
SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]
MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.
Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin
A quick recipe to learn all about Transformers
Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Efficient 3D human pose estimation in video using 2D keypoint trajectories
3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch
Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o
Yuno is context based search engine for anime.
Yuno yuno.mp4 Table of Contents Introduction Power Of Yuno Try Yuno How Yuno was created? References Introduction Yuno is a context based search engin
An Auto-Grinding bot made for Pokemeow. Efficient but not many features yet
PokeGrinder 🤖 This is an Auto-Grinding bot made for Pokemeow. Efficient but not many features yet. Supported features This bot can currently handle :
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches
BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applications: 1) finding overlapping reads and 2) read mapping. Described by Firtina et al.
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"
ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
Label data using HuggingFace's transformers and automatically get a prediction service
Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu
Model parallel transformers in JAX and Haiku
Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
FastFormers - highly efficient transformer models for NLU
FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo
Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention
Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz
DeLighT: Very Deep and Light-Weight Transformers
DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.
Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"
Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
Awesome Treasure of Transformers Models Collection
💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing
Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-
Text Classification in Turkish Texts with Bert
You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification
Powerful unsupervised domain adaptation method for dense retrieval.
Powerful unsupervised domain adaptation method for dense retrieval
SPEAR: Semi suPErvised dAta progRamming
Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding
Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.
PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super
Pangu-Alpha for Transformers
Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"
MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)
Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b
2D Human Pose estimation using transformers. Implementation in Pytorch
PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'
IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear
Experiments and examples converting Transformers to ONNX
Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON
State-of-the-art NLP through transformer models in a modular design and consistent APIs.
Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h
Hashformers is a framework for hashtag segmentation with transformers.
Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models
Parameter Efficient Deep Probabilistic Forecasting
PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"
Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim
Post-Training Quantization for Vision transformers.
PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.
TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch
N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage
Train and use generative text models in a few lines of code.
blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets
Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation
Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"
UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)
Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch
NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul
A simple and efficient computing package for Genshin Impact gacha analysis
GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例
Mastering Transformers, published by Packt
Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;
MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh
Rainbow DQN implementation accompanying the paper "Fast and Data-Efficient Training of Rainbow" which reaches 205.7 median HNS after 10M frames. 🌈
Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)
This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"
To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"
Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".
LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"
UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun
Train Dense Passage Retriever (DPR) with a single GPU
Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G
A Fast Knowledge Distillation Framework for Visual Recognition
FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"
ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f
Code for Editing Factual Knowledge in Language Models
KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed
OOD Generalization and Detection (ACL 2020)
Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Source code for "Efficient Training of BERT by Progressively Stacking"
Introduction This repository is the code to reproduce the result of Efficient Training of BERT by Progressively Stacking. The code is based on Fairseq
Understanding the Difficulty of Training Transformers
Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful